#' @export
#'
#' @title F.lifestage.passage.forkLength
#'
#' @description Estimate production by fork-length group and Fall run for all days within a
#' date range.
#'
#' @param site The identification number of the site for which estimates are
#' required.
#'
#' @param taxon The species identifier indicating the type of fish of interest.
#' This is always \code{161980}; i.e., Chinook Salmon.
#'
#' @param min.date The start date for data to include. This is a text string in
#' the format \code{\%Y-\%m-\%d}, or \code{YYYY-MM-DD}.
#'
#' @param max.date The end date for data to include. Same format as
#' \code{min.date}.
#'
#' @param by A text string indicating the temporal unit over which daily
#' estimated catch is to be summarized. Can be one of \code{"day"},
#' \code{"week"}, \code{"month"}, \code{"year"}.
#'
#' @param output.file A text string indicating a prefix to append to all output.
#'
#' @param ci A logical indicating if 95\% bootstrapped confidence intervals
#' should be estimated along with passage estimates.
#'
#' @param autols Default of \code{FALSE} leads to no assigning of no analytical
#' life stage. If \code{TRUE}, assignment of analytical life stage is performed.
#' See Details.
#'
#' @param nls Number of life stage groups to estimate. Ignored if
#' \code{autols=FALSE}. See Details.
#'
#' @param weightuse A logical indicating if variable \code{weight} should be used for
#' the analytical life stage assignment; the default is \code{NULL}. Ignored
#' if \code{autols=FALSE}. See Details.
#'
#' @param enhmodel A logical indicating if enhanced efficiency models should
#' be used to estimate trap efficiencies. Default is \code{TRUE}.
#'
#' @return A \code{csv} table of passage estimates over the specified date
#' range, with fork-length groups down the rows, and Fall run across the columns. A
#' \code{png} displaying proportion-of-catch bar charts of Fall run and fork-length groups.
#' For each run and fork-length-group combination found within the specified data
#' range, an additional series of output. A \code{csv} of daily passage
#' estimates for all traps operating at least one day, and catching at least
#' one fish, for all days within the specified date range. A \code{png} of
#' catch versus time, for all inclusive traps. A \code{png} of daily
#' efficiency estimates, and accompanying \code{csv} for all traps operating
#' at least one day, and catching at least one fish, for all days within the
#' specified time period. Finally, a bar chart of passage summarizing catch
#' over the time period specified via \code{by}.
#'
#' @details Function \code{F.lifestage.passage.forkLength} is the main workhorse function for
#' estimating passage with respect to forklength groups, restricted to Fall run. As such, it
#' calls several separate functions, some of which contain queries designed to
#' run against an Access database.
#'
#' Generally, queries against a database comprise two main efforts. The first
#' involves a query for efficiency trial data, generally called "release"
#' data, and conducted via function \code{F.get.release.data}, while the
#' second queries for catch data via function \code{F.get.catch.data}.
#'
#' Once catch data are obtained, fish are partitioned as to whether or not
#' they were assigned and caught during a half-cone operation. Function
#' \code{F.est.passage} wraps the functions that conduct the actual passage
#' estimation, which involves statistical fits of each of catch and efficiency
#' over time.
#'
#' All calls to function \code{F.run.passage} result in daily passage
#' estimates, and courser temporal estimates, based on the value specified via
#' \code{by}. Regardless of the temporal partitioning, estimates are always
#' additionally summarized by year. Function runs with \code{by} specified
#' as \code{"year"} output only one set of annual estimates.
#'
#' The difference between the specified \code{max.date} and \code{min.date}
#' must be less than or equal to 366 days, as calculated via function
#' \code{difftime}.
#'
#' Selection of \code{"week"} for input variable \code{by} results in weeks
#' displayed as customized Julian weeks, where weeks number 1-53. The
#' specific mapping of days to weeks can be found within the \code{Dates}
#' table of any associated CAMP Access database.
#'
#' Forklength groupings are specified via global variable
#' \code{forkLengthCutPoints} in \code{GlobalVars}, and by default, include up
#' to four distinct groupings. However, if no fish exist for a particular
#' grouping, no output associated with that grouping is created. When
#' \code{reclassify=TRUE}, the biologically recorded \code{lifeStage} is
#' redefined via groups specifed in data frame \code{forkLengthCutPoints}, as
#' defined in \code{GlobalVars}. Default behavior leads to four separate
#' fork-length-based groups. Similar to reports that break out totals by
#' biologically assigned \code{lifeStage}s, reports utilizing breakout by fork
#' length may not report totals for all four groups, if the river and date
#' range specified caught no fish with that particular range of fork lengths.
#' The remapping of \code{lifeStage} to reflect fork-length-based groupings is
#' performed by function \code{reclassifyLS}.
#'
#' @seealso \code{F.get.release.data}, \code{F.get.catch.data},
#' \code{F.est.passage}
#'
#' @author WEST Inc.
#'
#' @examples
#' \dontrun{
#' # ---- Estimate passage of Fall run based on fork-length groups
#' # ---- on the American.
#' site <- 57000
#' taxon <- 161980
#' min.date <- "2013-01-01"
#' max.date <- "2013-06-01"
#' by <- "week"
#' output.file <- NA
#' ci <- TRUE
#' nls <- NULL
#' weightuse <- NULL
#' autols <- FALSE
#' reclassifyFL <- TRUE
#'
#' F.lifestage.passage.forkLength(site,taxon,min.date,max.date,by,
#' output.file,ci,nls,weightuse,autols,reclassify)
#' }
F.lifestage.passage.forkLength <- function(site,taxon,min.date,max.date,by,output.file,ci=TRUE,enhmodel=FALSE,autols=FALSE,nls=NULL,weightuse=NULL){
# site <- 1000
# taxon <- 161980
# min.date <- "2005-12-01"
# max.date <- "2006-08-31"
# by <- "week"
# output.file <- "here"
# ci <- TRUE
# autols <- FALSE
# nls <- NULL
# weightuse <- NULL
# reclassifyFL <- TRUE
# ---- Make sure we have all temp tables.
tableChecker()
# ---- Check that taxon is Chinook salmon.
if( taxon != 161980 ) stop("Cannot specify any species other than Chinook salmon, code 161980.")
# ---- Ensure special consideration of forklength.
reclassifyFL <- TRUE
# ---- Obtain necessary variables from the global environment.
fishingGapMinutes <- get("fishingGapMinutes",envir=.GlobalEnv)
passageRounder <- get("passageRounder",envir=.GlobalEnv)
# ---- Check that times are less than or equal to 366 days apart.
strt.dt <- as.POSIXct( min.date, format="%Y-%m-%d" )
end.dt <- as.POSIXct( max.date, format="%Y-%m-%d" )
run.season <- data.frame( start=strt.dt, end=end.dt )
dt.len <- difftime(end.dt, strt.dt, units="days")
if( dt.len > 366 ) stop("Cannot specify more than 365 days in F.passage. Check min.date and max.date.")
# ---- Identify the type of passage report we're doing.
# Utilize this construction to avoid NOTEs about assigning variables to the
# .GlobalEnv when running devtools::check().
pos <- 1
envir <- as.environment(pos)
assign("passReport","lifeStage",envir=envir)
passReport <- get("passReport",envir=.GlobalEnv)
# ---- Start a progress bar.
progbar <<- winProgressBar("Production estimate for lifestage + runs",label="Fetching catch data",width=1000)
# ---- Fetch the catch and visit data.
tmp.df <- F.get.catch.data( site, taxon, min.date, max.date,output.file,autols=autols,nls=nls,weightuse=weightuse,reclassifyFL=TRUE)
# ---- All positive catches, all FinalRun and lifeStages, inflated for plus counts. Zero catches (visits without catch) are NOT here.
catch.df <- tmp.df$catch
# ---- Unique trap visits. This will be used in a merge to get zeros later.
visit.df <- tmp.df$visit
# ---- Save for below. Several dfs get named catch.df, so need to call this something else.
catch.dfX <- catch.df
# ---- Check if we can estimate catch (numerator).
if( is.null(catch.df) ){
stop( paste0( "No catch records between ", min.date, " and ", max.date, ". Check dates and taxon."))
}
# ---- Summarize catch data by trapVisitID X FinalRun X lifeStage.
# ---- Upon return, catch.df has one line per combination of these variables.
# ---- We run this separately to get different n.tot, and other statistics.
catch.df0 <- F.summarize.fish.visit( catch.df, 'unassigned' )
catch.df1 <- F.summarize.fish.visit( catch.df, 'inflated' )
catch.df2 <- F.summarize.fish.visit( catch.df, 'assigned')
catch.df3 <- F.summarize.fish.visit( catch.df, 'halfConeAssignedCatch' )
catch.df4 <- F.summarize.fish.visit( catch.df, 'halfConeUnassignedCatch' )
catch.df5 <- F.summarize.fish.visit( catch.df, 'assignedCatch' )
catch.df6 <- F.summarize.fish.visit( catch.df, 'unassignedCatch' )
catch.df7 <- F.summarize.fish.visit( catch.df, 'modAssignedCatch' )
catch.df8 <- F.summarize.fish.visit( catch.df, 'modUnassignedCatch' )
# ---- I calculate mean forklength here and attach via an attribute on visit.df. This way, it gets into function
# ---- F.get.release.data.enh. Note I make no consideration of FinalRun, or anything else. I get rid of plus
# ---- count fish, and instances where forkLength wasn't measured. Note that I do not restrict to RandomSelection ==
# ---- 'yes'. Many times, if there are few fish in the trap, they'll just measure everything, and record a
# ---- RandomSelection == 'no'.
catch.df2B <- catch.df[catch.df$Unassd != "Unassigned" & !is.na(catch.df$forkLength),]
# ---- Get the weighted-mean forkLength, weighting on the number of that length of fish caught. Return a vector
# ---- of numeric values in millimeters, with entry names reflecting trapVisitIDs. Also get the N for weighting.
flVec <- sapply(split(catch.df2B, catch.df2B$trapVisitID), function(x) weighted.mean(x$forkLength, w = x$Unmarked))
flDF <- data.frame(trapVisitID=names(flVec),wmForkLength=flVec,stringsAsFactors=FALSE)
nVec <- aggregate(catch.df2B$Unmarked,list(trapVisitID=catch.df2B$trapVisitID),sum)
names(nVec)[names(nVec) == "x"] <- "nForkLength"
tmp <- merge(flDF,nVec,by=c("trapVisitID"),all.x=TRUE)
tmp <- tmp[order(as.integer(tmp$trapVisitID)),]
attr(visit.df,"fl") <- tmp
# ---- Fetch efficiency data
setWinProgressBar( progbar, 0.1 , label="Fetching efficiency data" )
release.df <- F.get.release.data( site, taxon, min.date, max.date, visit.df )
# ---- Check if we can do enhanced efficiency. Only look at the level of site. If the provided site to the
# ---- function is not in sitesWithEnhEff, we know there was no effort to develop enh eff models at this site.
if( enhmodel ){
enhBetas <- utils::read.csv("..\\R\\library\\campR\\enhEffStats\\EnhancedBetas.csv")
sitesWithEnhEff <- unique(signif(enhBetas[enhBetas$Stage == "Final",]$subsiteID,2))
if( !(site %in% sitesWithEnhEff) ){
enhmodel <- FALSE
cat(paste0("You asked for enhanced efficiency, but I see none at this site. Flipped enhmodel <- FALSE.\n"))
cat(paste0("I will try to do Mark-Recapture instead.\n"))
setWinProgressBar( progbar, 0.15 , label="'Trap Efficiency Models' selected but none developed for this Site. Switching to Mark-Recapture Splines" )
Sys.sleep(5)
}
}
# ---- For enh eff models, it is okay if we have zero rows in release.df. But make a fake release.df so all
# ---- the objects that depend on it have something to grab.
if(is.null(release.df)){
if(enhmodel == TRUE){
release.df <- makeFake_release.df(site,min.date,max.date,visit.df)
if(is.null(release.df)){
stop(paste0("No efficiency trials between ",min.date, " and ",max.date,". Check dates.\n"))
}
} else {
stop( paste( "No efficiency trials between", min.date, "and", max.date, ". Check dates.\n"))
}
} else if(length(unique(visit.df$trapPositionID)[!(unique(round(visit.df$trapPositionID,0)) %in% unique(release.df$trapPositionID))]) > 0){
visit_but_no_release_traps <- unique(visit.df$trapPositionID)[!(unique(visit.df$trapPositionID) %in% unique(release.df$trapPositionID))]
cat(paste0("I'm going to add in fake releases for trap(s) ",paste0(visit_but_no_release_traps,collapse=", "),".\n"))
# ---- Add in thisIsFake to what we do have already.
release.df$thisIsFake <- 0
# ---- If we're here, we have a visit for a trap that lacks efficiency trials, but a visit for a different
# ---- trap that does have efficiency trials. This means release.df is not null. So we find the trap with
# ---- a visit but no efficiency trial and make a fake trial.
for(trap in visit_but_no_release_traps){
# ---- I restrict visit.df to trap here to ensure that makeFake returns one record for the trap of interest.
# ---- Only add a fake record if we need to.
release.df.fake <- makeFake_release.df(site,min.date,max.date,visit.df[visit.df$trapPositionID == trap,])
if(!is.null(release.df.fake)){
release.df <- rbind(release.df,release.df.fake)
}
}
} else {
release.df$thisIsFake <- rep(0,nrow(release.df))
}
# ---- Compute the unique runs we need to do.
runs <- unique(c(catch.df1$FinalRun,catch.df2$FinalRun))
runs <- runs[ !is.na(runs) ]
# ---- Set this report up to only run over Fall run.
runs <- runs[ runs == "Fall" ]
if( length( runs ) == 0 ){
stop("No Fall run records found between the specified time periods.\n")
}
cat("\nRuns found between", min.date, "and", max.date, ":\n")
print(runs)
# ---- Compute the unique life stages we need to do.
lstages <- unique(c(catch.df1$lifeStage,catch.df2$lifeStage))
# ---- Get rid of the unassigned. Possible issue with half-cone
# ---- operations and the plus-count algorithm (which is run twice).
lstages <- lstages[lstages != 'Unassigned']
# ---- Probably don't need this, as doubtful lifeStage never missing here.
lstages <- lstages[ !is.na(lstages) ]
cat("\nLife stages found between", min.date, "and", max.date, ":\n")
lstages <- sort(lstages)
print(lstages)
# ---- Print the number of non-fishing periods.
cat( paste("\nNumber of non-fishing intervals at all traps:", sum(visit.df$TrapStatus == "Not fishing"), "\n\n"))
# ---- Loop over runs.
ans <- lci <- uci <- matrix(0, length(lstages), length(runs))
dimnames(ans)<-list(lstages, runs)
out.fn.roots <- NULL
for( j in 1:length(runs) ){
assign("run.name",runs[j],envir=envir)
run.name <- get("run.name",envir=.GlobalEnv)
# ---- Assemble catches based on total, unassigned, assigned.
assd <- catch.df2[catch.df2$Unassd != 'Unassigned' & catch.df2$FinalRun == run.name,c('trapVisitID','lifeStage','n.tot','mean.fl','sd.fl')]
colnames(assd) <- c('trapVisitID','lifeStage','n.Orig','mean.fl.Orig','sd.fl.Orig')
catch.dfA <- merge(catch.df1,assd,by=c('trapVisitID','lifeStage'),all.x=TRUE)
unassd <- catch.df0[catch.df0$FinalRun == run.name,c('trapVisitID','lifeStage','n.tot')]
colnames(unassd) <- c('trapVisitID','lifeStage','n.Unassd')
catch.df <- merge(catch.dfA,unassd,by=c('trapVisitID','lifeStage'),all.x=TRUE)
# ---- Bring in halfcone counts.
names(catch.df3)[names(catch.df3) == 'n.tot'] <- 'halfConeAssignedCatch'
names(catch.df4)[names(catch.df4) == 'n.tot'] <- 'halfConeUnassignedCatch'
names(catch.df5)[names(catch.df5) == 'n.tot'] <- 'assignedCatch'
names(catch.df6)[names(catch.df6) == 'n.tot'] <- 'unassignedCatch'
names(catch.df7)[names(catch.df7) == 'n.tot'] <- 'modAssignedCatch'
names(catch.df8)[names(catch.df8) == 'n.tot'] <- 'modUnassignedCatch'
catch.df <- merge(catch.df,catch.df3[,c('trapVisitID','lifeStage','FinalRun','halfConeAssignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df4[,c('trapVisitID','lifeStage','FinalRun','halfConeUnassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df5[,c('trapVisitID','lifeStage','FinalRun','assignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df6[,c('trapVisitID','lifeStage','FinalRun','unassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df7[,c('trapVisitID','lifeStage','FinalRun','modAssignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df8[,c('trapVisitID','lifeStage','FinalRun','modUnassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
# ---- Do some fish accounting.
#theSumsBefore <<- accounting(catch.df,"byRun")
catch.df <- catch.df[order(catch.df$trapPositionID,catch.df$batchDate),]
cat(paste(rep("*",80), collapse=""))
tmp.mess <- paste("Processing ", run.name)
cat(paste("\n", tmp.mess, "\n"))
cat(paste(rep("*",80), collapse=""))
cat("\n\n")
# ---- Update progress bar.
progbar <- winProgressBar(tmp.mess,label="Lifestage X run processing",width=1000)
barinc <- 1 / (length(lstages) * 6)
assign( "progbar", progbar, pos=envir )
# ---- Create indicator of records to keep for this run.
# ---- Likely don't need is.na clause. FinalRun never missing here.
indRun <- (catch.df$FinalRun == run.name ) & !is.na(catch.df$FinalRun)
# ---- Loop over lifestages.
for( i in 1:length(lstages) ){
ls <- lstages[i]
# ---- Subset to just one life stage and run.
# ---- Likely don't need is.na clause. LifeStage never missing here.
indLS <- (catch.df$lifeStage == ls) & !is.na(catch.df$lifeStage)
cat(paste("Lifestage=", ls, "; Run=", run.name, "; num records=", sum(indRun & indLS), "\n"))
tmp.mess <- paste("Lifestage=", ls )
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc, label=tmp.mess )
# ---- If we caught this run and lifestage, compute passage estimate.
if( any( indRun & indLS ) ){
catch.df.ls <- catch.df[ indRun & indLS, c("trapVisitID", "FinalRun", "lifeStage", 'n.Orig','mean.fl.Orig','sd.fl.Orig',"n.tot", "mean.fl", "sd.fl","n.Unassd",'halfConeAssignedCatch','halfConeUnassignedCatch','assignedCatch','unassignedCatch','modAssignedCatch','modUnassignedCatch')]
# ---- Merge in the visits to get zeros.
catch.df.ls <- merge( visit.df, catch.df.ls, by="trapVisitID", all.x=T )
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
# ---- Update the constant variables. Missing n.tot when trap was fishing should be 0.
catch.df.ls$FinalRun[ is.na(catch.df.ls$FinalRun) ] <- run.name
catch.df.ls$lifeStage[ is.na(catch.df.ls$lifeStage) ] <- ls
catch.df.ls$n.tot[ is.na(catch.df.ls$n.tot) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$n.Orig[ is.na(catch.df.ls$n.Orig) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$n.Unassd[ is.na(catch.df.ls$n.Unassd) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$halfConeAssignedCatch[ is.na(catch.df.ls$halfConeAssignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$halfConeUnassignedCatch[ is.na(catch.df.ls$halfConeUnassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$assignedCatch[ is.na(catch.df.ls$assignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$unassignedCatch[ is.na(catch.df.ls$unassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$modAssignedCatch[ is.na(catch.df.ls$modAssignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$modUnassignedCatch[ is.na(catch.df.ls$modUnassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
# ---- Add back in the missing trapVisitID rows. These identify the gaps in fishing
#catch.df.ls <- rbind( catch.df.ls, catch.df[ is.na(catch.df$trapVisitID), ] )
# ---- Update progress bar.
out.fn.root <- paste0(output.file, ls, run.name )
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
# # ---- Deal with traps with all zero fish. Have to deal with this here
# # ---- since we now get rid of antecedent and precedent zeros.
# theSums <- tapply(catch.df.ls[!is.na(catch.df.ls$n.Orig),]$n.Orig,list(catch.df.ls[!is.na(catch.df.ls$n.Orig),]$trapPositionID),FUN=sum)
# theZeros <- names(theSums[theSums == 0])
# catch.df.ls <- catch.df.ls[!(catch.df.ls$trapPositionID %in% theZeros),]
# ---- Set these attributes so they can be passed along.
attr(catch.df.ls,"min.date") <- min.date
attr(catch.df.ls,"max.date") <- max.date
attr(catch.df.ls,"enhmodel") <- enhmodel
# ---- Compute passage.
if(nrow(catch.df.ls) > 0){# & sum(as.numeric(theSums)) > 0){
if(by == 'year'){
pass <- F.est.passage( catch.df.ls, release.df, "year", out.fn.root, ci )
passby <- pass
} else if(by != 'year'){
pass <- F.est.passage( catch.df.ls, release.df, "year", out.fn.root, ci )
passby <- F.est.passage( catch.df.ls, release.df, by, out.fn.root, ci )
}
} else {
# ---- We need something for the matrix down below if ALL traps have zero fish in data frame theZeros above.
pass <- data.frame(passage=0,lower.95=0,upper.95=0)
}
# ---- Update progress bar.
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
out.fn.roots <- c(out.fn.roots, attr(pass, "out.fn.list"))
# ---- Save.
ans[ i, j ] <- signif(round(pass$passage,0),passageRounder)
lci[ i, j ] <- signif(round(pass$lower.95,0),passageRounder)
uci[ i, j ] <- signif(round(pass$upper.95,0),passageRounder)
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
output.fn <- output.file
# ---- Write passage table to a file, if called for.
if( !is.na(output.fn) ){
# ---- Fix up the pass table to pretty the output.
tmp.df <- passby
if(by == 'week'){
# ---- Obtain Julian dates so days can be mapped to specialized Julian weeks.
db <- get( "db.file", envir=.GlobalEnv )
ch <- odbcConnectAccess(db)
JDates <- sqlFetch( ch, "Dates" )
close(ch)
the.dates <- JDates[as.Date(JDates$uniqueDate) >= min.date & as.Date(JDates$uniqueDate) <= max.date,]
the.dates <- the.dates[,c('year','julianWeek','julianWeekLabel')]
#the.dates <- subset(JDates, as.Date(uniqueDate) >= min.date & as.Date(uniqueDate) <= max.date,c(year,julianWeek,julianWeekLabel))
the.dates$week <- paste0(the.dates$year,'-',formatC(the.dates$julianWeek, width=2, flag="0"))
the.dates <- unique(the.dates)
# ---- A join on POSIX dates.
tmp.df <- merge(tmp.df,the.dates,by=c('week'),all.x=TRUE)
tmp.df$week <- paste0(strftime(tmp.df$date,"%Y"),"-",tmp.df$julianWeek,": ",tmp.df$julianWeekLabel)
tmp.df$year <- tmp.df$julianWeek <- tmp.df$julianWeekLabel <- NULL
#tmp.df <- subset(tmp.df, select = -c(year,julianWeek,julianWeekLabel) )
}
tzn <- get("time.zone", .GlobalEnv )
tmp.df$date <- as.POSIXct( strptime( format(tmp.df$date, "%Y-%m-%d"), "%Y-%m-%d", tz=tzn),tz=tzn)
tmp.df$passage <- round(tmp.df$passage)
tmp.df$lower.95 <- round(tmp.df$lower.95)
tmp.df$upper.95 <- round(tmp.df$upper.95)
tmp.df$error <- round(tmp.df$error)
tmp.df$meanForkLenMM <- round(tmp.df$meanForkLenMM,1)
tmp.df$sdForkLenMM <- round(tmp.df$sdForkLenMM,2)
tmp.df$pct.imputed.catch <- round(tmp.df$pct.imputed.catch, 3)
tmp.df$sampleLengthHrs <- round(tmp.df$sampleLengthHrs,1)
tmp.df$sampleLengthDays <- round(tmp.df$sampleLengthDays,2)
names(tmp.df)[ names(tmp.df) == "pct.imputed.catch" ] <- "propImputedCatch"
names(tmp.df)[ names(tmp.df) == "lower.95" ] <- "lower95pctCI"
names(tmp.df)[ names(tmp.df) == "upper.95" ] <- "upper95pctCI"
names(tmp.df)[ names(tmp.df) == "error" ] <- "error"
names(tmp.df)[ names(tmp.df) == "nForkLenMM" ] <- "numFishMeasured"
if( by == "day" ){
# ---- Merge in the trapsOperating column.
tO <- attr(passby, "trapsOperating")
tmp.df <- merge( tmp.df, tO, by.x="date", by.y="batchDate", all.x=T )
# ---- For aesthetics, change number fish measured on days in gaps from NA to 0.
tmp.df$numFishMeasured[ is.na(tmp.df$numFishMeasured) & (tmp.df$nTrapsOperating == 0) ] <- 0
}
# ---- Open file and write out header.
out.pass.table <- paste(output.fn, paste0(ls,run.name,"_passage_table.csv"), sep="")
out.fn.roots <- c(out.fn.roots,out.pass.table)
rs <- paste( format(run.season[1], "%d-%b-%Y"), "to", format(run.season[2], "%d-%b-%Y"))
nms <- names(tmp.df)[1]
for( i in 2:length(names(tmp.df))){
if(by == 'day'){
nms <- paste(nms, ",", names(tmp.df)[i], sep="")
} else {
if(i != 3){
nms <- paste(nms, ",", names(tmp.df)[i], sep="")
}
}
}
# ---- by == day results in a slightly different format for tmp.df than the other three.
if(by == 'day'){
nms <- gsub('date,', '', nms)
}
cat(paste("Writing passage estimates to", out.pass.table, "\n"))
sink(out.pass.table)
cat(paste("Site=,", catch.df$siteName[1], "\n", sep=""))
cat(paste("Site ID=,", catch.df$siteID[1], "\n", sep=""))
cat(paste("Species ID=,", taxon, "\n", sep=""))
cat(paste("Run =,", run.name, "\n", sep=""))
cat(paste("Lifestage =,", catch.df.ls$lifeStage[1], "\n", sep=""))
cat(paste("Summarized by=,", by, "\n", sep=""))
cat(paste("Dates included=,", rs, "\n", sep=""))
cat("\n")
cat(nms)
cat("\n")
sink()
# ---- Ensure the whole column of date doesnt print.
tmp.df$date <- NULL
# ---- Write out the table.
tmp.df$propImputedCatch <- ifelse(tmp.df$passage == 0,0,tmp.df$propImputedCatch)
write.table( tmp.df, file=out.pass.table, sep=",", append=TRUE, row.names=FALSE, col.names=FALSE)
}
}
}
# ---- Plot the final passage estimates.
# if( by != "year" ){
# attr(passby,"summarized.by") <- by
# attr(passby, "species.name") <- "Chinook Salmon"
# attr(passby, "site.name") <- catch.df$siteName[1]
# attr(passby, "run.name" ) <- run.name#catch.df$FinalRun[1]
# attr(passby, "lifestage.name" ) <- "All lifestages"
# attr(passby, "min.date" ) <- min.date
# attr(passby, "max.date" ) <- max.date
#
# # ---- Make the passage csv and barplot passage png agree on integer fish.
# passby$passage <- round(passby$passage,0)
# out.f <- F.plot.passage( passby, out.file=output.fn )
# out.fn.roots <- c(out.fn.roots, out.f)
# }
close(progbar)
}
cat("Final lifeStage X run estimates:\n")
print(ans)
# ---- Compute percentages of each life stage.
ans.pct <- matrix( colSums( ans ), byrow=T, ncol=ncol(ans), nrow=nrow(ans))
ans.pct <- ans / ans.pct
ans.pct[ is.na(ans.pct) ] <- NA
# ---- Write out the table.
df <- data.frame( dimnames(ans)[[1]], ans.pct[,1], ans[,1], lci[,1], uci[,1], stringsAsFactors=F )
if( ncol(ans) > 1 ){
# ---- We have more than one run.
for( j in 2:ncol(ans) ){
df <- cbind( df, data.frame( ans.pct[,j], ans[,j], lci[,j], uci[,j], stringsAsFactors=F ))
}
}
names(df) <- c("LifeStage", paste( rep(runs, each=4), rep( c(".propOfPassage",".passage",".lower95pctCI", ".upper95pctCI"), length(runs)), sep=""))
# ---- Append totals to bottom.
tots <- data.frame( "Total", matrix( colSums(df[,-1]), nrow=1), stringsAsFactors=F)
names(tots) <- names(df)
tots[,grep("lower.95", names(tots),fixed=T)] <- NA
tots[,grep("upper.95", names(tots),fixed=T)] <- NA
df <- rbind( df, Total=tots )
# ---- Output csv report.
if( !is.na(output.file) ){
out.pass.table <- paste(output.file, "_lifestage_passage_table.csv", sep="")
rs <- paste( format(run.season[1], "%d-%b-%Y"), "to", format(run.season[2], "%d-%b-%Y"))
nms <- names(df)[1]
for( i in 2:length(names(df))) nms <- paste(nms, ",", names(df)[i], sep="")
cat(paste("Writing passage estimates to", out.pass.table, "\n"))
sink(out.pass.table)
cat(paste("Site=,", catch.df$siteName[1], "\n", sep=""))
cat(paste("Site ID=,", catch.df$siteID[1], "\n", sep=""))
cat(paste("Species ID=,", taxon, "\n", sep=""))
cat(paste("Dates included=,", rs, "\n", sep=""))
cat("\n")
cat(nms)
cat("\n")
sink()
write.table( df, file=out.pass.table, sep=",", append=TRUE, row.names=FALSE, col.names=FALSE)
out.fn.roots <- c(out.fn.roots, out.pass.table)
assign("ls.pass.df",df,envir=envir)
# ---- Produce pie or bar charts.
rownames(df) <- df$LifeStage
fl <- F.plot.lifestages( df, output.file, plot.pies=F )
if( fl == "ZEROS" ){
cat("FAILURE - F.lifestage.passage - ALL ZEROS\nCheck dates and finalRunId's\n")
cat(paste("Working directory:", getwd(), "\n"))
cat(paste("R data frames saved in file:", "<none>", "\n\n"))
nf <- length(out.fn.roots)
cat(paste("Number of files created in working directory = ", nf, "\n"))
for(i in 1:length(out.fn.roots)){
cat(paste(out.fn.roots[i], "\n", sep=""))
}
cat("\n")
return(0)
} else {
out.fn.roots <- c(out.fn.roots, fl)
}
}
tableDeleter()
# ---- Write out message.
cat("SUCCESS - F.lifestage.passage\n\n")
cat(paste("Working directory:", getwd(), "\n"))
cat(paste("R data frames saved in file:", "<none>", "\n\n"))
nf <- length(out.fn.roots)
cat(paste("Number of files created in working directory = ", nf, "\n"))
for(i in 1:length(out.fn.roots)){
cat(paste(out.fn.roots[i], "\n", sep=""))
}
cat("\n")
df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.