#' Train tower model with keras
#'
#' @param img_dir Directory containing properly structured `train` and `validation` directories
#' @param output_dir Directory where model outputs should be save
#'
#' @param img_size Numeric vector length 2 containing the training image size in
#' pixels (order row, column)
#' @param img_horizontal_flip Image augmentation: should images be flipped horizontally
#' during training?
#' @param img_vertical_flip Image augmentation: should images be flipped vertically
#' during training?
#' @param batch_size Training model batch size (single number).
#' @param base_model Character containing the name of a base model available in the R `keras`
#' package via an `application_[base model name]` function. For example,
#' parameter value "vgg16" would call the keras `application_vgg16` function.
#' @param save_best_model_only Should training callback save model at every epoch or only retain
#' model with the best validation loss?
#'
#' @param dense_structure List of lists specifying structure of dense layers added to base model.
#' See examples.
#' @param dense_optimizer Character containing the name of an optimizer available in the R `keras`
#' package via an `optimizer_[optimizer name]` function. For example,
#' parameter value "rmsprop" would call the keras `optimizer_rmsprop`
#' function.
#' @param dense_lr Learning rate for dense layer training (single number).
#' @param dense_steps_per_epoch Steps per epoch for dense layer training (single number).
#' @param dense_epochs Number of epochs for dense layer training (single number).
#' @param dense_validation_steps Number of validation steps for dense layer training
#' (single number).
#'
#' @param first_ft_unfreeze Name of the base model layer where weights should be unfrozen for
#' first fine-tune training. Must be a valid layer name for the
#' base model specified in the `base_model` parameter.
#' @param first_ft_optimizer Character containing the name of an optimizer available in the R `keras`
#' package via an `optimizer_[optimizer name]` function.
#' @param first_ft_lr Learning rate for first fine-tune training (single number).
#' @param first_ft_steps_per_epoch Steps per epoch for first fine-tune training (single number).
#' @param first_ft_epochs Number of epochs for first fine-tune training (single number).
#' @param first_ft_validation_steps Number of validation steps for first fine-tune training
#' (single number).
#'
#' @param do_second_ft Do a second fine-tune training (TRUE or FALSE)?
#' @param second_ft_unfreeze Name of the base model layer where weights should be unfrozen for
#' second fine-tune training. Must be a valid layer name for the
#' base model specified in the `base_model` parameter.
#' @param second_ft_optimizer Character containing the name of an optimizer available in the R `keras`
#' package via an `optimizer_[optimizer name]` function.
#' @param second_ft_lr Learning rate for second fine-tune training (single number).
#' @param second_ft_steps_per_epoch Steps per epoch for second fine-tune training (single number).
#' @param second_ft_epochs Number of epochs for second fine-tune training (single number).
#' @param second_ft_validation_steps Number of validation steps for second fine-tune training
#' (single number).
#'
#' @param class_weights Named list with weights corresponding to outcome classes - see examples.
#' Optional - default is weights inversely proportional to outcome class
#' distribution in training set.
#'
#' @export
#' @importFrom keras
#' image_data_generator flow_images_from_directory
#' keras_model_sequential layer_flatten layer_dense layer_dropout
#' freeze_weights compile callback_model_checkpoint callback_csv_logger
#' fit_generator unfreeze_weights callback_reduce_lr_on_plateau
#' application_densenet application_densenet201 application_xception
#' application_nasnet application_mobilenet_v2 application_inception_resnet_v2
#' application_inception_v3 application_resnet50 application_vgg16
#' application_vgg19 application_densenet121 application_nasnetmobile
#' application_nasnetlarge application_densenet169 application_mobilenet
#' optimizer_adagrad optimizer_rmsprop optimizer_nadam optimizer_adadelta
#' optimizer_adam optimizer_adamax optimizer_sgd array_reshape predict_proba
#' image_load image_to_array
#'
#' @importFrom stringr str_detect str_replace
#' @importFrom abind abind
#' @importFrom utils write.csv
train_tower_model <- function(
# directories
img_dir = "data/tiles/splits/orig",
output_dir = "output",
# images
img_size = c(50, 50),
# training image params
img_horizontal_flip = TRUE,
img_vertical_flip = TRUE,
batch_size = 32,
# training model params
base_model = "vgg16",
save_best_model_only = TRUE,
# dense model params
dense_structure = list(
list(units = 256, dropout = 0.2),
list(units = 128, dropout = 0.2)
),
dense_optimizer = "rmsprop",
dense_lr = 1e-5,
dense_steps_per_epoch = 100,
dense_epochs = 30,
dense_validation_steps = 50,
# first fine-tune model params
first_ft_unfreeze = "block4_conv1",
first_ft_optimizer = "rmsprop",
first_ft_lr = 1e-5,
first_ft_steps_per_epoch = 100,
first_ft_epochs = 30,
first_ft_validation_steps = 50,
# second fine-tune model params
do_second_ft = TRUE,
second_ft_unfreeze = "block3_conv1",
second_ft_optimizer = "rmsprop",
second_ft_lr = 5e-6,
second_ft_steps_per_epoch = 100,
second_ft_epochs = 30,
second_ft_validation_steps = 50,
# class weights
class_weights = NULL
) {
# suppressMessages({
# library(keras)
# library(pbapply)
# library(ggplot2)
# library(stringr)
# library(ROCR)
# library(abind)
# })
message("Here we go!")
params <- as.list(environment())
#### error checks --------------------------------
# required arguments exists?
args_null <- stats::setNames(sapply(params, is.null), names(params))
req_args_null <- args_null[!(grepl("second_ft_", names(args_null)))]
if (any(req_args_null)) {
stop("All function arguments except `second_ft_*` are required")
}
if (params$do_second_ft) {
second_ft_args_null <- args_null[grepl("second_ft_", names(args_null))]
if (any(second_ft_args_null)) {
stop("If `do_second_ft` is TRUE, all",
"`second_ft_*` arguments are required")
}
}
# error check: source directories
if (!dir.exists(img_dir)) {
stop("`img_dir` does not exist!")
}
if (!dir.exists(output_dir)) {
stop("`output_dir` does not exist!")
}
# error check: image params
if (!(is.numeric(img_size) && length(img_size) == 2)) {
stop("`img_size` must be a numeric vector of length 2")
}
if (!(is.numeric(batch_size) && length(batch_size) == 1)) {
stop("Image flow parameter `batch_size` must be a numeric vector of length 1")
}
# error check: base model
keras_funs <- getNamespaceExports("keras")
base_model_options <- keras_funs[str_detect(keras_funs, "application_")]
base_model_options <- str_replace(base_model_options, "application_", "")
if (!(params$base_model %in% base_model_options)) {
stop("Base model choice not available in keras package!")
}
# error check: optimizers
optimizer_options <- keras_funs[str_detect(keras_funs, "optimizer_")]
optimizer_options <- str_replace(optimizer_options, "optimizer_", "")
if (!(params$dense_optimizer %in% optimizer_options)) {
stop("Dense optimizer choice not available in keras package!")
}
if (!(params$first_ft_optimizer %in% optimizer_options)) {
stop("First fine-tune optimizer choice not available in keras package!")
}
if (!(params$second_ft_optimizer %in% optimizer_options)) {
stop("Second fine-tune optimizer choice not available in keras package!")
}
# error check: model params
model_param_args <- params[grepl("_lr", names(params)) |
grepl("_steps_per_epoch", names(params)) |
grepl("_epochs", names(params)) |
grepl("_validation_steps", names(params))]
model_param_args <- sapply(model_param_args, function(x) {
is.numeric(x) & length(x) == 1
})
if (any(!model_param_args)) {
stop("All arguments *_lr, *_steps_per_epoch, *_epochs, *_validation_steps ",
"must be single numeric values")
}
if (!is.null(class_weights)) {
if (!is.list(class_weights) || length(class_weights) != 2 ||
!is.numeric(class_weights[[1]]) || !is.numeric(class_weights[[2]]) ||
length(names(class_weights)) != 2 || ("" %in% names(class_weights))) {
stop("Argument `class_weights` must be a named list of length 2 ",
"containing numeric values.")
}
}
# create and error check directories
params$train_dir <- file.path(params$img_dir, "train")
params$valid_dir <- file.path(params$img_dir, "validation")
if (!(dir.exists(params$train_dir) && dir.exists(params$valid_dir))) {
stop("`img_dir` must contain 2 directories named 'train' and 'validation'")
}
if (!(dir.exists(file.path(params$train_dir, "tower")) &&
dir.exists(file.path(params$train_dir, "notower")) &&
dir.exists(file.path(params$valid_dir, "tower")) &&
dir.exists(file.path(params$valid_dir, "notower")))) {
stop("Both 'train' and 'validation' directories must contain 2 ",
"directories names 'tower' and 'notower'")
}
params$num_train_tower <- length(list.files(file.path(params$train_dir, "tower")))
params$num_train_notower <- length(list.files(file.path(params$train_dir, "notower")))
params$output_dir <- file.path(params$output_dir, Sys.Date())
dir.create(params$output_dir)
params$models_dir <- file.path(params$output_dir, "models")
dir.create(params$models_dir)
# make class weights
if (is.null(class_weights)) {
params$class_weights <- list(
`1` = (params$num_train_tower + params$num_train_notower) / params$num_train_tower,
`0` = (params$num_train_tower + params$num_train_notower) / params$num_train_notower
)
message("\nTower distribution in training data: \n",
" Prop. tower = ", round(1 / params$class_weights$`1`, 3), "\n",
" Prop. no tower = ", round(1 / params$class_weights$`0`, 3)
)
} else {
params$class_weights <- class_weights
}
#### initiate model objects ----------------------------
train_datagen <- image_data_generator(
rescale = 1/255,
horizontal_flip = params$img_horizontal_flip,
vertical_flip = params$img_vertical_flip)
train_flow <- flow_images_from_directory(
params$train_dir,
train_datagen,
target_size = params$img_size,
batch_size = params$batch_size,
class_mode = "binary"
)
valid_datagen <- image_data_generator(rescale = 1/255)
valid_flow <- flow_images_from_directory(
params$valid_dir,
valid_datagen,
target_size = params$img_size,
batch_size = params$batch_size,
class_mode = "binary"
)
#### freeze base net ---------------------------------
conv_base <- do.call(paste0("application_", params$base_model),
args = list(weights = "imagenet",
include_top = FALSE,
input_shape = c(params$img_size, 3)))
#### train dense layers ---------------------------------
model <- keras_model_sequential() %>%
conv_base %>%
layer_flatten()
for (i in seq_along(params$dense_structure)) {
model <- model %>%
layer_dense(units = params$dense_structure[[i]][["units"]],
activation = "relu")
if (("dropout" %in% names(params$dense_structure[[i]])) &&
params$dense_structure[[i]][["dropout"]] > 0) {
model <- model %>%
layer_dropout(rate = params$dense_structure[[i]][["dropout"]])
}
}
model <- model %>%
layer_dense(units = 1, activation = "sigmoid")
freeze_weights(conv_base)
params$curr_model_dir <- file.path(params$models_dir, format(Sys.time(), '%Y-%m-%d_%H-%M-%S'))
dir.create(params$curr_model_dir)
sink(file = file.path(params$curr_model_dir, "model-structure.txt"))
print(summary(model))
sink()
params$dense_trainable_weights <- length(model$trainable_weights)
my_optimizer <- do.call(paste0("optimizer_", params$dense_optimizer),
args = list(lr = params$dense_lr))
model %>% compile(
loss = "binary_crossentropy",
optimizer = my_optimizer,
metrics = c("accuracy", "mae")
)
callback_list <- list(
callback_model_checkpoint(
filepath = file.path(params$curr_model_dir, "model_train-dense.h5"),
monitor = "val_loss",
save_best_only = params$save_best_model_only
),
callback_csv_logger(
filename = file.path(params$curr_model_dir, "log_train-dense.csv")
)
)
message("\nTraining dense model:")
before <- Sys.time()
history <- model %>% fit_generator(
train_flow,
steps_per_epoch = params$dense_steps_per_epoch,
epochs = params$dense_epochs,
validation_data = valid_flow,
validation_steps = params$dense_validation_steps,
callbacks = callback_list,
class_weight = params$class_weights
)
params$dense_training_time <- Sys.time() - before
message("Dense model took ",
round(params$dense_training_time, 3),
" ",
attr(params$dense_training_time, "units"),
" to train.")
params$dense_training_history <- history
message("Best dense model validation metrics: \n",
" Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
" Accuracy = ",
round(history$metrics$val_acc[
which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
3))
#### train first fine-tune model -------------------------------
length(model$trainable_weights)
unfreeze_weights(conv_base, from = params$first_ft_unfreeze)
params$first_ft_trainable_weights <- length(model$trainable_weights)
my_optimizer <- do.call(paste0("optimizer_", params$first_ft_optimizer),
args = list(lr = params$first_ft_lr))
model %>% compile(
loss = "binary_crossentropy",
optimizer = my_optimizer,
metrics = c("accuracy", "mae")
)
callback_list <- list(
callback_model_checkpoint(
filepath = file.path(params$curr_model_dir, "model_fine-tune-1.h5"),
monitor = "val_loss",
save_best_only = params$save_best_model_only
),
callback_csv_logger(
filename = file.path(params$curr_model_dir, "log_fine-tune-1.csv")
),
callback_reduce_lr_on_plateau()
)
message("\nTraining first fine-tune model:")
before <- Sys.time()
history <- model %>% fit_generator(
train_flow,
steps_per_epoch = params$first_ft_steps_per_epoch,
epochs = params$first_ft_epochs,
validation_data = valid_flow,
validation_steps = params$first_ft_validation_steps,
callbacks = callback_list
)
params$first_ft_training_time <- Sys.time() - before
message("First first fine-tune model took ",
round(params$first_ft_training_time, 3),
" ",
attr(params$first_ft_training_time, "units"),
" to train.")
params$first_ft_training_history <- history
message("Best first fine-tune model validation metrics: \n",
" Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
" Accuracy = ",
round(history$metrics$val_acc[
which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
3))
#### train second fine-tune model -------------------------------
if (params$do_second_ft) {
unfreeze_weights(conv_base, from = params$second_ft_unfreeze)
params$second_ft_trainable_weights <- length(model$trainable_weights)
my_optimizer <- do.call(paste0("optimizer_", params$second_ft_optimizer),
args = list(lr = params$second_ft_lr))
model %>% compile(
loss = "binary_crossentropy",
optimizer = my_optimizer,
metrics = c("accuracy", "mae")
)
callback_list <- list(
callback_model_checkpoint(
filepath = file.path(params$curr_model_dir, "model_fine-tune-2.h5"),
monitor = "val_loss",
save_best_only = params$save_best_model_only
),
callback_csv_logger(
filename = file.path(params$curr_model_dir, "log_fine-tune-2.csv")
),
callback_reduce_lr_on_plateau()
)
message("\nTraining second fine-tune model:")
before <- Sys.time()
history <- model %>% fit_generator(
train_flow,
steps_per_epoch = params$second_ft_steps_per_epoch,
epochs = params$second_ft_epochs ,
validation_data = valid_flow,
validation_steps = params$second_ft_validation_steps,
callbacks = callback_list
)
params$second_ft_training_time <- Sys.time() - before
message("Second fine-tune model took ",
round(params$second_ft_training_time, 3),
" ",
attr(params$second_ft_training_time, "units"),
" to train.")
params$second_ft_training_history <- history
message("Best second fine-tune model validation metrics: \n",
" Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
" Accuracy = ",
round(history$metrics$val_acc[
which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
3))
}
#### score validation images -------------------------------
valid_files <- list.files(params$valid_dir, full.names = TRUE, recursive = TRUE)
img_dims <- dim(
keras::image_to_array(
keras::image_load(valid_files[1])
)
)
img_to_score <- lapply(valid_files, function(img) {
out <- keras::image_load(img)
out <- keras::image_to_array(out)
out <- keras::array_reshape(out, c(1, img_dims))
out <- out / 255
out
})
img_to_score <- abind::abind(img_to_score, along = 1)
predicted_probs <- data.frame(pred_prob = keras::predict_proba(model, img_to_score))
predicted_probs[["img_name"]] <- valid_files
predicted_probs[["truth"]] <- as.numeric(!grepl("notower", valid_files))
utils::write.csv(predicted_probs,
file = file.path(params$curr_model_dir, "valid-img-scores.csv"),
row.names = FALSE)
predicted_probs <- predicted_probs[order(predicted_probs[["pred_prob"]]), ]
total_pos <- sum(predicted_probs[["truth"]] == 1)
total_neg <- sum(predicted_probs[["truth"]] == 0)
confusion <- lapply(seq_len(nrow(predicted_probs) - 1), function(i) {
out <- data.frame(
split_val = predicted_probs[["pred_prob"]][i],
num_below_split = i,
num_above_split = nrow(predicted_probs) - i
)
below <- predicted_probs[seq(1, i), ]
out[["false_neg"]] <- sum(below[["truth"]] == 1)
out[["true_neg"]] <- sum(below[["truth"]] == 0)
above <- predicted_probs[seq(i + 1, nrow(predicted_probs)), ]
out[["false_pos"]] <- sum(above[["truth"]] == 0)
out[["true_pos"]] <- sum(above[["truth"]] == 1)
out[["sens_recall"]] <- out[["true_pos"]] / total_pos
out[["spec"]] <- out[["true_neg"]] / total_neg
out[["ppv_precision"]] <- out[["true_pos"]] / (out[["true_pos"]] + out[["false_pos"]])
out[["npv"]] <- out[["true_neg"]] / (out[["true_neg"]] + out[["false_neg"]])
out
})
confusion <- do.call("rbind", confusion)
utils::write.csv(confusion,
file = file.path(params$curr_model_dir, "valid-confusion-matrix.csv"),
row.names = FALSE)
#### save params -------------------------------------
sink(file = file.path(params$curr_model_dir, "run-parameters.txt"))
print(params)
sink()
sink(file = file.path(params$curr_model_dir, "run-parameters_dput.txt"))
dput(params)
sink()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.