analysis/1a_run-one-model.R

library(keras)
library(pbapply)
library(ggplot2)
library(stringr)
library(ROCR)
library(abind)

#### parameters ---------------------------
params <- list(

  # directories
  img_base_dir = "data/model-training-data",
  img_dir = "slices_curated_2019-05-16",
  output_dir = "output/multi-model-runs",

  # images
  img_size = c(50, 50),

  # training image params
  img_horizontal_flip = FALSE,
  img_vertical_flip = FALSE,
  batch_size = 32,

  # training model params
  base_model = "vgg16",
  save_best_model_only = TRUE,

  # dense model structure
  add_small_final_layer = FALSE,
  small_layer_size = NA,

  # dense model params
  dense_structure = list(
    list(units = 256, dropout = 0.2),
    list(units = 128, dropout = 0.2)
  ),
  dense_optimizer = "rmsprop",
  dense_lr = 1e-5,
  dense_steps_per_epoch = 100,
  dense_epochs = 50,
  dense_validation_steps = 50,

  # first fine-tune model params
  first_ft_unfreeze = "block4_conv1",
  first_ft_optimizer = "rmsprop",
  first_ft_lr = 1e-5,
  first_ft_steps_per_epoch = 100,
  first_ft_epochs = 50,
  first_ft_validation_steps = 50,

  # second fine-tune model params
  do_second_ft = FALSE,
  second_ft_unfreeze = "block3_conv1",
  second_ft_optimizer = "rmsprop",
  second_ft_lr = 5e-6,
  second_ft_steps_per_epoch = 100,
  second_ft_epochs = 50,
  second_ft_validation_steps = 50,

  class_weights = list(
      `1` = 10,
      `0` = 1
    )
)

#### setup --------------------------------
if (params$do_second_ft) {
  second_ft_args_null <- args_null[grepl("second_ft_", names(args_null))]

  if (any(second_ft_args_null)) {
    stop("If `do_second_ft` is TRUE, all",
         "`second_ft_*` arguments are required")
  }
}

if (params$add_small_final_layer && is.null(params$small_layer_size)) {
  stop("If `add_small_final_layer` is TRUE, ",
       "`small_layer_size` argument is required.")
}

# error check: source directories
if (!dir.exists(params$img_base_dir)) {
  stop("`img_base_dir` does not exist!")
}

if (!dir.exists(file.path(params$img_base_dir, params$img_dir))) {
  stop("`img_dir` does not exist!")
}

if (!dir.exists(params$output_dir)) {
  stop("`output_dir` does not exist!")
}

# error check: image params
if (!(is.numeric(params$img_size) && length(params$img_size) == 2)) {
  stop("`img_size` must be a numeric vector of length 2")
}

if (!(is.numeric(params$batch_size) && length(params$batch_size) == 1)) {
  stop("Image flow parameter `batch_size` must be a numeric vector of length 1")
}

# error check: base model
keras_funs <- getNamespaceExports("keras")
base_model_options <- keras_funs[str_detect(keras_funs, "application_")]
base_model_options <- str_replace(base_model_options, "application_", "")

if (!(params$base_model %in% base_model_options)) {
  stop("Base model choice not available in keras package!")
}

# error check: optimizers
optimizer_options <- keras_funs[str_detect(keras_funs, "optimizer_")]
optimizer_options <- str_replace(optimizer_options, "optimizer_", "")

if (!(params$dense_optimizer %in% optimizer_options)) {
  stop("Dense optimizer choice not available in keras package!")
}

if (!(params$first_ft_optimizer %in% optimizer_options)) {
  stop("First fine-tune optimizer choice not available in keras package!")
}

if (!(params$second_ft_optimizer %in% optimizer_options)) {
  stop("Second fine-tune optimizer choice not available in keras package!")
}

# error check: model params
model_param_args <- params[grepl("_lr", names(params)) |
                             grepl("_steps_per_epoch", names(params)) |
                             grepl("_epochs", names(params)) |
                             grepl("_validation_steps", names(params))]
model_param_args <- sapply(model_param_args, function(x) {
  is.numeric(x) & length(x) == 1
})

if (any(!model_param_args)) {
  stop("All arguments *_lr, *_steps_per_epoch, *_epochs, *_validation_steps ",
       "must be single numeric values")
}

# create and error check directories
params$train_dir <- file.path(params$img_base_dir, params$img_dir, "train")
params$valid_dir <- file.path(params$img_base_dir, params$img_dir, "validation")

if (!(dir.exists(params$train_dir) && dir.exists(params$valid_dir))) {
  stop("`img_dir` must contain 2 directories named 'train' and 'validation'")
}

if (!(dir.exists(file.path(params$train_dir, "tower")) &&
      dir.exists(file.path(params$train_dir, "notower")) &&
      dir.exists(file.path(params$valid_dir, "tower")) &&
      dir.exists(file.path(params$valid_dir, "notower")))) {
  stop("Both 'train' and 'validation' directories must contain 2 ",
       "directories names 'tower' and 'notower'")
}

params$num_train_tower <- length(list.files(file.path(params$train_dir, "tower")))
params$num_train_notower <- length(list.files(file.path(params$train_dir, "notower")))

params$output_dir <- file.path(params$output_dir, Sys.Date())
dir.create(params$output_dir)

params$models_dir <- file.path(params$output_dir, "models")
dir.create(params$models_dir)

#### initiate model objects ----------------------------
train_datagen <- image_data_generator(
  rescale = 1/255,
  horizontal_flip = params$img_horizontal_flip,
  vertical_flip = params$img_vertical_flip)

train_flow <- flow_images_from_directory(
  params$train_dir,
  train_datagen,
  target_size = params$img_size,
  batch_size = params$batch_size,
  class_mode = "binary"
)

valid_datagen <- image_data_generator(rescale = 1/255)

valid_flow <- flow_images_from_directory(
  params$valid_dir,
  valid_datagen,
  target_size = params$img_size,
  batch_size = params$batch_size,
  class_mode = "binary"
)

#### freeze base net ---------------------------------
conv_base <- do.call(paste0("application_", params$base_model),
                     args = list(weights = "imagenet",
                                 include_top = FALSE,
                                 input_shape = c(params$img_size, 3)))

#### train dense layers ---------------------------------
model <- keras_model_sequential() %>%
  conv_base %>%
  layer_flatten()

for (i in seq_along(params$dense_structure)) {
  model <- model %>%
    layer_dense(units = params$dense_structure[[i]][["units"]],
                activation = "relu")

  if (params$dense_structure[[i]][["dropout"]] > 0) {
    model <- model %>%
      layer_dropout(rate = params$dense_structure[[i]][["dropout"]])
  }
}

if (params$add_small_final_layer) {
  model <- model %>%
    layer_dense(units = params$small_layer_size, activation = "relu")
}

model <- model %>%
  layer_dense(units = 1, activation = "sigmoid")

freeze_weights(conv_base)

params$curr_model_dir <- file.path(params$models_dir, format(Sys.time(), '%Y-%m-%d_%H-%M-%S'))
dir.create(params$curr_model_dir)

sink(file = file.path(params$curr_model_dir, "model-structure.txt"))
print(summary(model))
sink()

params$dense_trainable_weights <- length(model$trainable_weights)

my_optimizer <- do.call(paste0("optimizer_", params$dense_optimizer),
                        args = list(lr = params$dense_lr))

model %>% compile(
  loss = "binary_crossentropy",
  optimizer = my_optimizer,
  metrics = c("accuracy")
)

callback_list <- list(
  callback_model_checkpoint(
    filepath = file.path(params$curr_model_dir, "model_train-dense.h5"),
    monitor = "val_loss",
    save_best_only = params$save_best_model_only
  ),
  callback_csv_logger(
    filename = file.path(params$curr_model_dir, "log_train-dense.csv")
  )
)

message("\nTraining dense model:")
before <- Sys.time()

history <- model %>% fit_generator(
  train_flow,
  steps_per_epoch = params$dense_steps_per_epoch,
  epochs = params$dense_epochs,
  validation_data = valid_flow,
  validation_steps = params$dense_validation_steps,
  callbacks = callback_list,
  class_weight = params$class_weights
)

params$dense_training_time <- Sys.time() - before
message("Dense model took ",
        round(params$dense_training_time, 3),
        " ",
        attr(params$dense_training_time, "units"),
        " to train.")

params$dense_training_history <- history
message("Best dense model validation metrics: \n",
        "   Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
        "   Accuracy = ",
        round(history$metrics$val_acc[
          which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
          3))

#### train first fine-tune model -------------------------------
length(model$trainable_weights)

unfreeze_weights(conv_base, from = params$first_ft_unfreeze)

params$first_ft_trainable_weights <- length(model$trainable_weights)

my_optimizer <- do.call(paste0("optimizer_", params$first_ft_optimizer),
                        args = list(lr = params$first_ft_lr))

model %>% compile(
  loss = "binary_crossentropy",
  optimizer = my_optimizer,
  metrics = c("accuracy")
)

callback_list <- list(
  callback_model_checkpoint(
    filepath = file.path(params$curr_model_dir, "model_fine-tune-1.h5"),
    monitor = "val_loss",
    save_best_only = params$save_best_model_only
  ),
  callback_csv_logger(
    filename = file.path(params$curr_model_dir, "log_fine-tune-1.csv")
  ),
  callback_reduce_lr_on_plateau()
)

message("\nTraining first fine-tune model:")
before <- Sys.time()

history <- model %>% fit_generator(
  train_flow,
  steps_per_epoch = params$first_ft_steps_per_epoch,
  epochs = params$first_ft_epochs,
  validation_data = valid_flow,
  validation_steps = params$first_ft_validation_steps,
  callbacks = callback_list
)

params$first_ft_training_time <- Sys.time() - before
message("First first fine-tune model took ",
        round(params$first_ft_training_time, 3),
        " ",
        attr(params$first_ft_training_time, "units"),
        " to train.")

params$first_ft_training_history <- history
message("Best first fine-tune model validation metrics: \n",
        "   Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
        "   Accuracy = ",
        round(history$metrics$val_acc[
          which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
          3))

#### train second fine-tune model -------------------------------
if (params$do_second_ft) {
  unfreeze_weights(conv_base, from = params$second_ft_unfreeze)

  params$second_ft_trainable_weights <- length(model$trainable_weights)

  my_optimizer <- do.call(paste0("optimizer_", params$second_ft_optimizer),
                          args = list(lr = params$second_ft_lr))

  model %>% compile(
    loss = "binary_crossentropy",
    optimizer = my_optimizer,
    metrics = c("accuracy")
  )

  callback_list <- list(
    callback_model_checkpoint(
      filepath = file.path(params$curr_model_dir, "model_fine-tune-2.h5"),
      monitor = "val_loss",
      save_best_only = params$save_best_model_only
    ),
    callback_csv_logger(
      filename = file.path(params$curr_model_dir, "log_fine-tune-2.csv")
    ),
    callback_reduce_lr_on_plateau()
  )

  message("\nTraining second fine-tune model:")
  before <- Sys.time()

  history <- model %>% fit_generator(
    train_flow,
    steps_per_epoch = params$second_ft_steps_per_epoch,
    epochs = params$second_ft_epochs ,
    validation_data = valid_flow,
    validation_steps = params$second_ft_validation_steps,
    callbacks = callback_list
  )

  params$second_ft_training_time <- Sys.time() - before
  message("Second fine-tune model took ",
          round(params$second_ft_training_time, 3),
          " ",
          attr(params$second_ft_training_time, "units"),
          " to train.")

  params$second_ft_training_history <- history
  message("Best second fine-tune model validation metrics: \n",
          "   Loss = ", round(min(history$metrics$val_loss, na.rm = TRUE), 3), "\n",
          "   Accuracy = ",
          round(history$metrics$val_acc[
            which(history$metrics$val_loss == min(history$metrics$val_loss, na.rm = TRUE))],
            3))
}

sink(file = file.path(params$curr_model_dir, "run-parameters.txt"))
print(params)
sink()
sink(file = file.path(params$curr_model_dir, "run-parameters_dput.txt"))
dput(params)
sink()

#### score training images -----------------------------
message("Scoring training images.")

valid_files <- list.files(params$valid_dir, full.names = TRUE, recursive = TRUE)

img_dims <- dim(image_to_array(image_load(valid_files[1])))

img_to_score <- pblapply(valid_files, function(img) {
  out <- image_load(img)
  out <- image_to_array(out)
  out <- array_reshape(out, c(1, img_dims))
  out <- out / 255
  out
})

img_to_score <- abind::abind(img_to_score, along = 1)

predicted_probs <- data.frame(pred_prob = predict_proba(model, img_to_score))
predicted_probs[["img_name"]] <- valid_files
predicted_probs[["truth"]] <- as.numeric(!stringr::str_detect(valid_files, "notower"))

write.csv(predicted_probs,
          file = file.path(params$curr_model_dir, "predicted-probs.csv"),
          row.names = FALSE)

predicted_probs <- predicted_probs[order(predicted_probs[["pred_prob"]]), ]

total_pos <- sum(predicted_probs[["truth"]] == 1)
total_neg <- sum(predicted_probs[["truth"]] == 0)

confusion <- lapply(seq_len(nrow(predicted_probs) - 1), function(i) {
  out <- data.frame(
    split_val = predicted_probs[["pred_prob"]][i],
    num_below_split = i,
    num_above_split = nrow(predicted_probs) - i
    )

  below <- predicted_probs[seq(1, i), ]
  out[["false_neg"]] <- sum(below[["truth"]] == 1)
  out[["true_neg"]] <- sum(below[["truth"]] == 0)

  above <- predicted_probs[seq(i + 1, nrow(predicted_probs)), ]
  out[["false_pos"]] <- sum(above[["truth"]] == 0)
  out[["true_pos"]] <- sum(above[["truth"]] == 1)

  out[["sens_recall"]] <- out[["true_pos"]] / total_pos
  out[["spec"]] <- out[["true_neg"]] / total_neg
  out[["ppv_precision"]] <- out[["true_pos"]] / (out[["true_pos"]] + out[["false_pos"]])
  out[["npv"]] <- out[["true_neg"]] / (out[["true_neg"]] + out[["false_neg"]])

  out
})

confusion <- do.call("rbind", confusion)

utils::write.csv(confusion,
                 file = file.path(params$curr_model_dir, "valid-confusion-matrix.csv"),
                 row.names = FALSE)


#### examine scored test images ----------------------------
predicted_probs <- read.csv(file.path(params$curr_model_dir, "predicted-probs.csv"),
                            stringsAsFactors = FALSE)

pred <- prediction(predicted_probs$pred_prob, predicted_probs$truth)

message("Final model performance measures:\n",
        "ROC AUC = ",
        round(performance(pred, "auc")@y.values[[1]], 3), "\n",
        "Max possible accuracy = ",
        round(max(performance(pred, "acc")@y.values[[1]]), 3)
)

ggplot(predicted_probs) +
  geom_histogram(aes(x = pred_prob, y = ..count../sum(..count..),
                     fill = factor(truth)),
                 binwidth = .01, color = NA, alpha = .4) +
  scale_fill_brewer(palette = "Dark2",
                    guide = guide_legend(title = "Truth")) +
  ggtitle("Model predicted probabilities for test set, by actual value") +
  xlab("Predicted probability") +
  ylab("Proportion of all images") +
  theme_minimal()
treysp/coolit.train documentation built on Oct. 10, 2019, 3:24 p.m.