Description Usage Arguments Details Value Note References See Also Examples
polarity
- Approximate the sentiment (polarity) of text by grouping
variable(s).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | polarity(
text.var,
grouping.var = NULL,
polarity.frame = qdapDictionaries::key.pol,
constrain = FALSE,
negators = qdapDictionaries::negation.words,
amplifiers = qdapDictionaries::amplification.words,
deamplifiers = qdapDictionaries::deamplification.words,
question.weight = 0,
amplifier.weight = 0.8,
n.before = 4,
n.after = 2,
rm.incomplete = FALSE,
digits = 3,
...
)
|
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
polarity.frame |
A dataframe or hash key of positive/negative words and weights. |
constrain |
logical. If ((1 - (1/(1 + exp(polarity)))) * 2) - 1 |
negators |
A character vector of terms reversing the intent of a positive or negative word. |
amplifiers |
A character vector of terms that increase the intensity of a positive or negative word. |
deamplifiers |
A character vector of terms that decrease the intensity of a positive or negative word. |
question.weight |
The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity. |
amplifier.weight |
The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value. |
n.before |
The number of words to consider as valence shifters before the polarized word. |
n.after |
The number of words to consider as valence shifters after the polarized word. |
rm.incomplete |
logical. If |
digits |
Integer; number of decimal places to round when printing. |
... |
Other arguments supplied to |
The equation used by the algorithm to assign value to polarity of
each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to
tag polarized words. A context cluster (x_i^T) of words is
pulled from around this polarized word (default 4 words before and two words
after) to be considered as valence shifters. The words in this context
cluster are tagged as neutral (x_i^0), negator
(x_i^N), amplifier (x_i^a), or de-amplifier
(x_i^d). Neutral words hold no value
in the equation but do affect word count (n). Each polarized word is
then weighted w based on the weights from the polarity.frame
argument and then further weighted by the number and position of the valence
shifters directly surrounding the positive or negative word. The researcher
may provide a weight c to be utilized with amplifiers/de-amplifiers
(default is .8; deamplifier weight is constrained to -1 lower bound). Last,
these context cluster (x_i^T) are summed and divided by the
square root of the word count (√n) yielding an unbounded
polarity score (C). Note that context clusters containing a
comma before the polarized word will only consider words found after the
comma.
C=x_i^2/√(n)
Where:
x_i^T=∑((1 + c * (x_i^A - x_i^D)) * w(-1)^(∑x_i^N))
x_i^A=∑(w_neg * x_i^a)
x_i^D = max(x_i^D', -1)
x_i^D'=∑(- w_neg * x_i^a + x_i^d)
w_neg= (∑x_i^N) mod 2
Returns a list of:
all |
A dataframe of scores per row with:
|
group |
A dataframe with the average polarity score by grouping variable:
|
digits |
integer value od number of digits to display; mostly internal use |
The polarity score is dependent upon the polarity dictionary used.
This function defaults to the word polarity dictionary used by Hu, M., &
Liu, B. (2004), however, this may not be appropriate for the context of
children in a classroom. The user may (is encouraged) to provide/augment the
dictionary (see the sentiment_frame
function). For instance the word
"sick" in a high school setting may mean that something is good, whereas
"sick" used by a typical adult indicates something is not right or negative
connotation (deixis).
Also note that polarity
assumes you've run
sentSplit
.
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.
https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for
http://hedonometer.org/papers.html Links to papers on hedonometrics
https://github.com/trestletech/Sermon-Sentiment-Analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | ## Not run:
with(DATA, polarity(state, list(sex, adult)))
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
counts(poldat)
scores(poldat)
plot(poldat)
poldat2 <- with(mraja1spl, polarity(dialogue,
list(sex, fam.aff, died)))
colsplit2df(scores(poldat2))
plot(poldat2)
plot(scores(poldat2))
cumulative(poldat2)
poldat3 <- with(rajSPLIT, polarity(dialogue, person))
poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[,
"ave.polarity"])
poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[,
"polarity"])
htruncdf(scores(poldat3), 10)
htruncdf(counts(poldat3), 15, 8)
plot(poldat3)
plot(poldat3, nrow=4)
qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity")
## Create researcher defined sentiment.frame
POLKEY <- sentiment_frame(positive.words, negative.words)
POLKEY
c("abrasive", "abrupt", "happy") %hl% POLKEY
# Augmenting the sentiment.frame
mycorpus <- c("Wow that's a raw move.", "His jokes are so corny")
counts(polarity(mycorpus))
POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny"))
counts(polarity(mycorpus, polarity.frame=POLKEY))
## ANIMATION
#===========
(deb2 <- with(subset(pres_debates2012, time=="time 2"),
polarity(dialogue, person)))
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
print(bg_black, pause=.75)
bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", pause=.75)
## Save it
library(animation)
library(igraph)
library(plotrix)
loc <- folder(animation_polarity)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN <- function() {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(-1.1, -1.25, -.2, -1.2)
Legend.cex <- 1
lapply(seq_along(bgb), function(i) {
par(mar=c(2, 0, 1, 0), bg="black")
set.seed(10)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
animation::ani.pause()
})
}
FUN()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 500, ani.width=500,
outdir = file.path(loc, "new"), single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Animated corresponding text plot
Animate(deb2, type="text")
#=====================#
## Complex Animation ##
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gridExtra)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Generate a folder
loc2 <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gplots)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Set up the line version
deb2_line <- plot(cumulative(deb2_bar))
## Generate a folder
loc2b <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2b, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2b, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
## Increased complexity
## --------------------
## Helper function to cbind ggplots
cbinder <- function(x, y){
uns_x <- unit(c(-1.3,.15,-.75,.25), "cm")
uns_y <- unit(c(-1.3,.5,-.75,.15), "cm")
x <- x + theme(plot.margin = uns_x,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
y <- y + theme(plot.margin = uns_y,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
plots <- list(x, y)
grobs <- list()
heights <- list()
for (i in 1:length(plots)){
grobs[[i]] <- ggplotGrob(plots[[i]])
heights[[i]] <- grobs[[i]]$heights[2:5]
}
maxheight <- do.call(grid::unit.pmax, heights)
for (i in 1:length(grobs)){
grobs[[i]]$heights[2:5] <- as.list(maxheight)
}
do.call("arrangeGrob", c(grobs, ncol = 2))
}
deb2_combo <- Map(cbinder, deb2_bar, deb2_line)
## Generate a folder
loc3 <- folder(animation_polarity3)
FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc3, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
p <- deb2_combo[[i]]
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN3()
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc3, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN3(TRUE)
##-----------------------------##
## Constraining between -1 & 1 ##
##-----------------------------##
## The old behavior of polarity constrained the output to be between -1 and 1
## this can be replicated via the `constrain = TRUE` argument:
polarity("really hate anger")
polarity("really hate anger", constrain=TRUE)
#==================#
## Static Network ##
#==================#
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
m <- Network(poldat)
m
print(m, bg="grey97", vertex.color="grey75")
print(m, title="Polarity Discourse Map", title.color="white", bg="black",
legend.text.color="white", vertex.label.color = "grey70",
edge.label.color="yellow")
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m+ theme_nightheat(title="Polarity Discourse Map")
#===============================#
## CUMULATIVE POLARITY EXAMPLE ##
#===============================#
# Hedonometrics #
#===============================#
poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE))
polcount <- na.omit(counts(poldat4)$polarity)
len <- length(polcount)
cummean <- function(x){cumsum(x)/seq_along(x)}
cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len)
## Calculate background rectangles
ends <- cumsum(rle(counts(poldat4)$act)$lengths)
starts <- c(1, head(ends + 1, -1))
rects <- data.frame(xstart = starts, xend = ends + 1,
Act = c("I", "II", "III", "IV", "V"))
library(ggplot2)
ggplot() + theme_bw() +
geom_rect(data = rects, aes(xmin = xstart, xmax = xend,
ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) +
geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) +
geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) +
annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30",
label = "Average Polarity", vjust = .3, size=3) +
geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) +
ylab("Cumulative Average Polarity") + xlab("Duration") +
scale_x_continuous(expand = c(0,0)) +
geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04,
label=paste("Act", Act)), size=3) +
guides(fill=FALSE) +
scale_fill_brewer(palette="Set1")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.