Description Usage Arguments Details Value Note See Also Examples
as.tdm
- Create term document matrices from raw text or
wfm
for use with other text analysis packages.
as.TermDocumentMatrix
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.dtm
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.DocumentTermMatrix
- Create document term matrices from raw text or
wfm
for use with other text analysis packages.
as.data.frame
- Convert a tm package Corpus
to
a qdap data.frame
.
as.Corpus
- Attempts to convert its argument into a tm package
Corpus
.
apply_as_tm
- Apply functions intended to be used on the tm
package's TermDocumentMatrix
to a wfm
object.
apply_as_df
- Apply a tm Corpus
as a qdap
dataframe.
apply_as_df
- Apply functions intended to be used on the qdap
package's data.frame
+ sentSplit
to
a tm Corpus
object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
as.TermDocumentMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
as.DocumentTermMatrix(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'Corpus'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## Default S3 method:
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'character'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'Corpus'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## Default S3 method:
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'character'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'wfm'
as.tdm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'wfm'
as.dtm(text.var, grouping.var = NULL, vowel.check = TRUE, ...)
## S3 method for class 'Corpus'
as.data.frame(
x,
row.names,
optional,
...,
doc = "doc_id",
text = "text",
sent.split = FALSE
)
as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)
## S3 method for class 'sent_split'
as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)
## Default S3 method:
as.Corpus(text.var, grouping.var = NULL, demographic.vars, ...)
apply_as_tm(wfm.obj, tmfun, ..., to.qdap = TRUE)
apply_as_df(
tm.corpus,
qdapfun,
...,
stopwords = NULL,
min = 1,
max = Inf,
count.apostrophe = TRUE,
ignore.case = TRUE
)
## S3 method for class 'TermDocumentMatrix'
as.Corpus(text.var, ...)
## S3 method for class 'DocumentTermMatrix'
as.Corpus(text.var, ...)
## S3 method for class 'wfm'
as.Corpus(text.var, ...)
|
text.var |
The text variable or a |
grouping.var |
The grouping variables. Default |
vowel.check |
logical. Should terms without vowels be remove? |
x |
A |
row.names |
|
optional |
logical. If |
doc |
Name for |
text |
Name for |
sent.split |
logical. If |
demographic.vars |
Additional demographic information about the grouping
variables. This is a data.frame, list of equal length vectors, or a single
vector corresponding to the grouping variable/text variable. This
information will be mapped to the DMetaData in the |
wfm.obj |
A |
tmfun |
A function applied to a |
to.qdap |
logical. If |
tm.corpus |
A |
qdapfun |
A qdap function that is usually used on text.variable ~ grouping variable. |
stopwords |
A character vector of words to remove from the text. qdap
has a number of data sets that can be used as stop words including:
|
min |
Minimum word length. |
max |
Maximum word length. |
count.apostrophe |
logical. If |
ignore.case |
logical. If |
... |
Function dependant:
|
Produces output that is identical to the tm
package's
TermDocumentMatrix
, DocumentTermMatrix
,
Corpus
or allows convenient interface between the qdap and
tm packages.
as.tdm
- Returns a TermDocumentMatrix
.
as.TermDocumentMatrix
- Returns a
TermDocumentMatrix
.
as.dtm
- Returns a DocumentTermMatrix
.
as.DocumentTermMatrix
- Returns a
TermDocumentMatrix
.
as.data.frame
- Converts a Corpus
and returns
a qdap oriented data.frame
.
as.Corpus
- Converts a qdap oriented dataframe and returns
a Corpus
.
apply_as_tm
- Applies a tm oriented function to a
wfm
and attempts to simplify back to a
wfm
or weight
format.
apply_as_df
- Returns the output typical of the applied
qdap function.
aply_as_df
coerces to a dataframe with columns named 'docs' and
the other named 'text'.
DocumentTermMatrix
,
Corpus
,
TermDocumentMatrix
,
as.wfm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | ## Not run:
as.dtm(DATA$state, DATA$person)
as.tdm(DATA$state, DATA$person)
x <- wfm(DATA$state, DATA$person)
as.tdm(x)
as.dtm(x)
library(tm)
plot(as.tdm(x))
pres <- as.tdm(pres_debates2012$dialogue, pres_debates2012$person)
plot(pres, corThreshold = 0.8)
pres
(pres2 <- removeSparseTerms(pres, .3))
plot(pres2, corThreshold = 0.95)
shorts <- all_words(pres_debates2012)[,1][nchar(all_words(
pres_debates2012)[,1]) < 4]
SW <- c(shorts, qdapDictionaries::contractions[, 1],
qdapDictionaries::Top200Words,
"governor", "president", "mister", "obama","romney")
DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW))
DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95)
(DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,])
plot(DocTermMat2)
## Correspondence Analysis
library(ca)
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
speech <- stemmer(dat$dialogue)
mytable1 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top25Words))
fit <- ca(as.matrix(mytable1))
summary(fit)
plot(fit)
plot3d.ca(fit, labels=1)
mytable2 <- with(dat, as.tdm(speech, list(person, time), stopwords = Top200Words))
fit2 <- ca(as.matrix(mytable2))
summary(fit2)
plot(fit2)
plot3d.ca(fit2, labels=1)
## Topic Models
# Example 1 #
library(topicmodels); library(tm)
# Generate stop words based on short words, frequent words and contractions
shorts <- all_words(pres_debates2012)[,1][nchar(all_words(
pres_debates2012)[,1]) < 4]
SW <- c(shorts, qdapDictionaries::contractions[, 1],
qdapDictionaries::Top200Words,
"governor", "president", "mister", "obama","romney")
DocTermMat <- with(pres_debates2012, as.dtm(dialogue, person, stopwords = SW))
DocTermMat <- removeSparseTerms(DocTermMat,0.999)
DocTermMat <- DocTermMat[rowSums(as.matrix(DocTermMat))> 0,]
lda.model <- LDA(DocTermMat, 5)
(topics <- posterior(lda.model, DocTermMat)$topics)
terms(lda.model,20)
# Plot the Topics Per Person
topic.dat <- matrix2df(topics, "Person")
colnames(topic.dat)[-1] <- paste2(t(terms(lda.model,20)), sep=", ")
library(reshape2)
mtopic <- melt(topic.dat, variable="Topic", value.name="Proportion")
ggplot(mtopic, aes(weight=Proportion, x=Topic, fill=Topic)) +
geom_bar() +
coord_flip() +
facet_grid(Person~.) +
guides(fill=FALSE)
# Example 2 #
DocTermMat2 <- with(pres_debates2012, as.dtm(dialogue, list(person, time), stopwords = SW))
DocTermMat2 <- removeSparseTerms(DocTermMat2,0.95)
DocTermMat2 <- DocTermMat2[rowSums(as.matrix(DocTermMat2))> 0,]
lda.model2 <- LDA(DocTermMat2, 6)
(topics2 <- posterior(lda.model2, DocTermMat2)$topics)
terms(lda.model2,20)
qheat(topics2, high="blue", low="yellow", by.col=FALSE)
# Example 3 #
lda.model3 <- LDA(DocTermMat2, 10)
(topics3 <- posterior(lda.model3, DocTermMat2)$topics)
terms(lda.model3, 20)
qheat(topics3, high="blue", low="yellow", by.col=FALSE)
# Plot the Topics Per Person
topic.dat3 <- matrix2df(topics3, "Person&Time")
colnames(topic.dat3)[-1] <- paste2(t(terms(lda.model3, 10)), sep=", ")
topic.dat3 <- colsplit2df(topic.dat3)
library(reshape2)
library(scales)
mtopic3 <- melt(topic.dat3, variable="Topic", value.name="Proportion")
(p1 <- ggplot(mtopic3, aes(weight=Proportion, x=Topic, fill=Topic)) +
geom_bar() +
coord_flip() +
facet_grid(Person~Time) +
guides(fill=FALSE) +
scale_y_continuous(labels = percent) +
theme(plot.margin = unit(c(1, 0, 0.5, .5), "lines")) +
ylab("Proportion"))
mtopic3.b <- mtopic3
mtopic3.b[, "Topic"] <- factor(as.numeric(mtopic3.b[, "Topic"]), levels = 1:10)
mtopic3.b[, "Time"] <- factor(gsub("time ", "", mtopic3.b[, "Time"]))
p2 <- ggplot(mtopic3.b, aes(x=Time, y=Topic, fill=Proportion)) +
geom_tile(color = "white") +
scale_fill_gradient(low = "grey70", high = "red") +
facet_grid(Person~Time, scales = "free") +
theme(axis.title.y = element_blank(),
axis.text.x= element_text(colour="white"),
axis.ticks.x= element_line(colour="white"),
axis.ticks.y = element_blank(),
axis.text.y= element_blank(),
plot.margin = unit(c(1, -.5, .5, -.9), "lines")
)
library(gridExtra)
grid.arrange(p1, p2, nrow=1, widths = grid::unit(c(.85, .15), "native"))
## tm Matrices to wfm
library(tm)
data(crude)
## A Term Document Matrix Conversion
(tm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE)))
converted <- as.wfm(tm_in)
head(converted)
summary(converted)
## A Document Term Matrix Conversion
(dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE)))
summary(as.wfm(dtm_in))
## `apply_as_tm` Examples
## Create a wfm
a <- with(DATA, wfm(state, list(sex, adult)))
summary(a)
## Apply functions meant for a tm TermDocumentMatrix
out <- apply_as_tm(a, tm:::removeSparseTerms, sparse=0.6)
summary(out)
apply_as_tm(a, tm:::findAssocs, "computer", .8)
apply_as_tm(a, tm:::findFreqTerms, 2, 3)
apply_as_tm(a, tm:::Zipf_plot)
apply_as_tm(a, tm:::Heaps_plot)
apply_as_tm(a, tm:::plot.TermDocumentMatrix, corThreshold = 0.4)
library(proxy)
apply_as_tm(a, tm:::weightBin)
apply_as_tm(a, tm:::weightBin, to.qdap = FALSE)
apply_as_tm(a, tm:::weightSMART)
apply_as_tm(a, tm:::weightTfIdf)
## Convert tm Corpus to Dataframe
## A tm Corpus
library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578),
readerControl = list(reader = readReut21578XML))
## Convert to dataframe
corp_df <- as.data.frame(reuters)
htruncdf(corp_df)
z <- as.Corpus(DATA$state, DATA$person,
demographic=DATA[, qcv(sex, adult, code)])
as.data.frame(z)
## Apply a qdap function
out <- formality(corp_df$text, corp_df$docs)
plot(out)
## Convert a qdap dataframe to tm package Corpus
(x <- with(DATA2, as.Corpus(state, list(person, class, day))))
library(tm)
inspect(x)
inspect_text(x)
class(x)
(y <- with(pres_debates2012, as.Corpus(dialogue, list(person, time))))
## Add demographic info to DMetaData of Corpus
z <- as.Corpus(DATA$state, DATA$person,
demographic=DATA[, qcv(sex, adult, code)])
lview(z)
lview(as.Corpus(DATA$state, DATA$person,
demographic=DATA$sex))
lview(as.Corpus(DATA$state, DATA$person,
demographic=list(DATA$sex, DATA$adult)))
## Apply qdap functions meant for dataframes from sentSplit to tm Corpus
library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578),
readerControl = list(reader = readReut21578XML))
matches <- list(
oil = qcv(oil, crude),
money = c("economic", "money")
)
apply_as_df(reuters, word_stats)
apply_as_df(reuters, formality)
apply_as_df(reuters, word_list)
apply_as_df(reuters, polarity)
apply_as_df(reuters, Dissimilarity)
apply_as_df(reuters, diversity)
apply_as_df(reuters, pos_by)
apply_as_df(reuters, flesch_kincaid)
apply_as_df(reuters, trans_venn)
apply_as_df(reuters, gantt_plot)
apply_as_df(reuters, rank_freq_mplot)
apply_as_df(reuters, character_table)
(termco_out <- apply_as_df(reuters, termco, match.list = matches))
plot(termco_out, values = TRUE, high="red")
(wordcor_out <- apply_as_df(reuters, word_cor, word = unlist(matches)))
plot(wordcor_out)
(f_terms <- apply_as_df(reuters, freq_terms, at.least = 3))
plot(f_terms)
apply_as_df(reuters, trans_cloud)
## To use "all" rather than "docs" as "grouping.var"...
apply_as_df(reuters, trans_cloud, grouping.var=NULL,
target.words=matches, cloud.colors = c("red", "blue", "grey75"))
finds <- apply_as_df(reuters, freq_terms, at.least = 5,
top = 5, stopwords = Top100Words)
apply_as_df(reuters, dispersion_plot, match.terms = finds[, 1],
total.color = NULL)
## Filter for Term Document Matrix/Document Term Matrix
library(tm)
data(crude)
(tdm_in <- TermDocumentMatrix(crude, control = list(stopwords = TRUE)))
Filter(tdm_in, 5)
(dtm_in <- DocumentTermMatrix(crude, control = list(stopwords = TRUE)))
Filter(dtm_in, 5)
## Filter particular words based on max/min values
Filter(dtm_in, 5, 7)
Filter(dtm_in, 4, 4)
Filter(tdm_in, 3, 4)
Filter(tdm_in, 3, 4, stopwords = Top200Words)
## SPECIAL REMOVAL OF TERMS (more flexible consideration of words than wfm)
dat <- data.frame(
person = paste0("person_", 1:5),
tweets = c("test one two", "two apples","hashtag #apple",
"#apple #tree", "http://microsoft.com")
)
## remove specialty items
dat[[2]] <- rm_default(dat[[2]], pattern=pastex("@rm_url", "#apple\\b"))
myCorp <- tm::tm_map(crude, tm::removeWords, Top200Words)
myCorp %>% as.dtm() %>% tm::inspect()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.