#'@title Evaluate Power for Survival Design
#'
#'@description Evaluates power for an experimental design in which the response variable may be
#'right- or left-censored. Power is evaluated with a Monte Carlo simulation,
#'using the \code{survival} package and \code{survreg} to fit the data. Split-plot designs are not supported.
#'
#'@param design The experimental design. Internally, all numeric columns will be rescaled to [-1, +1].
#'@param model The model used in evaluating the design. If this is missing and the design
#'was generated with skpr, the generating model will be used. It can be a subset of the model used to
#'generate the design, or include higher order effects not in the original design generation. It cannot include
#'factors that are not present in the experimental design.
#'@param alpha Default `0.05`. The type-I error. p-values less than this will be counted as significant.
#'@param nsim The number of simulations. Default 1000.
#'@param distribution Distribution of survival function to use when fitting the data. Valid choices are described
#'in the documentation for \code{survreg}. \emph{Supported} options are
#'"exponential", "lognormal", or "gaussian". Default "gaussian".
#'@param censorpoint The point after/before (for right-censored or left-censored data, respectively)
#'which data should be labelled as censored. Default NA for no censoring. This argument is
#'used only by the internal random number generators; if you supply your own function to
#'the \code{rfunctionsurv} parameter, then this parameter will be ignored.
#'@param censortype The type of censoring (either "left" or "right"). Default "right".
#'@param rfunctionsurv Random number generator function. Should be a function of the form f(X, b), where X is the
#'model matrix and b are the anticipated coefficients. This function should return a \code{Surv} object from
#'the \code{survival} package. You do not need to provide this argument if \code{distribution} is one of
#' the supported choices and you are satisfied with the default behavior described below.
#'@param anticoef The anticipated coefficients for calculating the power. If missing, coefficients
#'will be automatically generated based on the \code{effectsize} argument.
#'@param effectsize Helper argument to generate anticipated coefficients. See details for more info.
#'If you specify \code{anticoef}, \code{effectsize} will be ignored.
#'@param contrasts Default \code{contr.sum}. Function used to encode categorical variables in the model matrix. If the user has specified their own contrasts
#'for a categorical factor using the contrasts function, those will be used. Otherwise, skpr will use contr.sum.
#'@param parallel Default `FALSE`. If `TRUE`, the power simulation will use all but one of the available cores.
#' If the user wants to set the number of cores manually, they can do this by setting `options("cores")` to the desired number (e.g. `options("cores" = parallel::detectCores())`).
#' NOTE: If you have installed BLAS libraries that include multicore support (e.g. Intel MKL that comes with Microsoft R Open), turning on parallel could result in reduced performance.
#'@param detailedoutput Default `FALSE`. If `TRUE`, return additional information about evaluation in results.
#'@param progress Default `TRUE`. Whether to include a progress bar.
#'@param advancedoptions Default `NULL`. Named list of advanced options. Pass `progressBarUpdater` to include function called in non-parallel simulations that can be used to update external progress bar.
#'`advancedoptions$ci_error_conf` will set the confidence level for power intervals, which are printed when `detailedoutput = TRUE`.
#'@param ... Any additional arguments to be passed into the \code{survreg} function during fitting.
#'@return A data frame consisting of the parameters and their powers. The parameter estimates from the simulations are
#'stored in the 'estimates' attribute. The 'modelmatrix' attribute contains the model matrix and the encoding used for
#'categorical factors. If you manually specify anticipated coefficients, do so in the order of the model matrix.
#'@import foreach doParallel stats iterators doFuture
#'@details Evaluates the power of a design with Monte Carlo simulation. Data is simulated and then fit
#'with a survival model (\code{survival::survreg}), and the fraction of simulations in which a parameter
#'is significant
#'(its p-value is less than the specified \code{alpha})
#'is the estimate of power for that parameter.
#'
#'If not supplied by the user, \code{rfunctionsurv} will be generated based on the \code{distribution}
#'argument as follows:
#'\tabular{lr}{
#'\bold{distribution} \tab \bold{generating function} \cr
#'"gaussian" \tab \code{rnorm(mean = X \%*\% b, sd = 1)} \cr
#'"exponential" \tab \code{rexp(rate = exp(-X \%*\% b))} \cr
#'"lognormal" \tab \code{rlnorm(meanlog = X \%*\% b, sdlog = 1)} \cr
#'}
#'
#'In each case, if a simulated data point is past the censorpoint (greater than for right-censored, less than for
#'left-censored) it is marked as censored. See the examples below for how to construct your own function.
#'
#'
#'Power is dependent on the anticipated coefficients. You can specify those directly with the \code{anticoef}
#'argument, or you can use the \code{effectsize} argument to specify an effect size and \code{skpr} will auto-generate them.
#'You can provide either a length-1 or length-2 vector. If you provide a length-1 vector, the anticipated
#'coefficients will be half of \code{effectsize}; this is equivalent to saying that the \emph{linear predictor}
#'(for a gaussian model, the mean response; for an exponential model or lognormal model,
#'the log of the mean value)
#'changes by \code{effectsize} when a continuous factor goes from its lowest level to its highest level. If you provide a
#'length-2 vector, the anticipated coefficients will be set such that the \emph{mean response} changes from
#'\code{effectsize[1]} to \code{effectsize[2]} when a factor goes from its lowest level to its highest level, assuming
#'that the other factors are inactive (their x-values are zero).
#'
#'The effect of a length-2 \code{effectsize} depends on the \code{distribution} argument as follows:
#'
#'For \code{distribution = 'gaussian'}, the coefficients are set to \code{(effectsize[2] - effectsize[1]) / 2}.
#'
#'For \code{distribution = 'exponential'} or \code{'lognormal'},
#'the intercept will be
#'\code{1 / 2 * (log(effectsize[2]) + log(effectsize[1]))},
#'and the other coefficients will be
#'\code{1 / 2 * (log(effectsize[2]) - log(effectsize[1]))}.
#'
#'@export
#'@examples #These examples focus on the survival analysis case and assume familiarity
#'#with the basic functionality of eval_design_mc.
#'
#'#We first generate a simple 2-level design using expand.grid:
#'basicdesign = expand.grid(a = c(-1, 1))
#'design = gen_design(candidateset = basicdesign, model = ~a, trials = 15)
#'
#'#We can then evaluate the power of the design in the same way as eval_design_mc,
#'#now including the type of censoring (either right or left) and the point at which
#'#the data should be censored:
#'
#'eval_design_survival_mc(design = design, model = ~a, alpha = 0.05,
#' nsim = 100, distribution = "exponential",
#' censorpoint = 5, censortype = "right")
#'
#'#Built-in Monte Carlo random generating functions are included for the gaussian, exponential,
#'#and lognormal distributions.
#'
#'#We can also evaluate different censored distributions by specifying a custom
#'#random generating function and changing the distribution argument.
#'
#'rlognorm = function(X, b) {
#' Y = rlnorm(n = nrow(X), meanlog = X %*% b, sdlog = 0.4)
#' censored = Y > 1.2
#' Y[censored] = 1.2
#' return(survival::Surv(time = Y, event = !censored, type = "right"))
#'}
#'
#'#Any additional arguments are passed into the survreg function call. As an example, you
#'#might want to fix the "scale" argument to survreg, when fitting a lognormal:
#'
#'eval_design_survival_mc(design = design, model = ~a, alpha = 0.2, nsim = 100,
#' distribution = "lognormal", rfunctionsurv = rlognorm,
#' anticoef = c(0.184, 0.101), scale = 0.4)
eval_design_survival_mc = function(
design,
model = NULL,
alpha = 0.05,
nsim = 1000,
distribution = "gaussian",
censorpoint = NA,
censortype = "right",
rfunctionsurv = NULL,
anticoef = NULL,
effectsize = 2,
contrasts = contr.sum,
parallel = FALSE,
detailedoutput = FALSE,
progress = TRUE,
advancedoptions = NULL,
...
) {
if (missing(design)) {
stop("skpr: No design detected in arguments.")
}
if (!is.null(getOption("skpr_progress"))) {
progress = getOption("skpr_progress")
}
if (missing(model) || (is.numeric(model) && missing(alpha))) {
if (is.numeric(model) && missing(alpha)) {
alpha = model
}
if (is.null(attr(design, "generating.model"))) {
stop("skpr: No model detected in arguments or in design attributes.")
} else {
model = attr(design, "generating.model")
}
}
args = list(...)
if ("RunMatrix" %in% names(args)) {
stop("skpr: RunMatrix argument deprecated. Use `design` instead.")
}
#detect pre-set contrasts
presetcontrasts = list()
for (x in names(design)[
lapply(design, class) %in% c("character", "factor")
]) {
if (!is.null(attr(design[[x]], "contrasts"))) {
presetcontrasts[[x]] = attr(design[[x]], "contrasts")
}
}
if (!is.null(advancedoptions)) {
if (is.null(advancedoptions$GUI)) {
advancedoptions$GUI = FALSE
}
if (!is.null(advancedoptions$progressBarUpdater)) {
progressBarUpdater = advancedoptions$progressBarUpdater
} else {
progressBarUpdater = NULL
}
} else {
advancedoptions = list()
advancedoptions$GUI = FALSE
progressBarUpdater = NULL
}
if (is.null(advancedoptions$ci_error_conf)) {
advancedoptions$ci_error_conf = 0.95
}
if (attr(terms.formula(model, data = design), "intercept") == 1) {
nointercept = FALSE
} else {
nointercept = TRUE
}
#Remove skpr-generated REML blocking indicators if present
run_matrix_processed = remove_skpr_blockcols(design)
#covert tibbles
run_matrix_processed = as.data.frame(run_matrix_processed)
#----- Convert dots in formula to terms -----#
model = convert_model_dots(run_matrix_processed, model)
#----- Rearrange formula terms by order -----#
model = rearrange_formula_by_order(model, data = run_matrix_processed)
contains_transform = function(expr, transform) {
if (is.call(expr)) {
if (as.character(expr[[1]]) == transform) {
return(TRUE)
} else {
return(any(sapply(as.list(expr[-1]), contains_transform)))
}
} else {
return(FALSE)
}
}
#Check for pre-transformed censorpoints
if (is.null(rfunctionsurv)) {
if (distribution == "lognormal") {
if (contains_transform(substitute(censorpoint), "log")) {
warning(
"`log` transformation detected in the `censorpoint` input, but this value should be stated in units of the response variable."
)
}
} else if (distribution == "exp") {
if (contains_transform(substitute(censorpoint), "exp")) {
warning(
"`exp` transformation detected in the `censorpoint` input, but this value should be stated in units of the response variable."
)
}
}
}
#Generating random generation function for survival. If no censorpoint specified, return all uncensored.
if (is.na(censorpoint)) {
censorfunction = function(data, point) rep(FALSE, length(data))
}
if (censortype == "left" && !is.na(censorpoint)) {
censorfunction = function(data, point) data < point
}
if (censortype == "right" && !is.na(censorpoint)) {
censorfunction = function(data, point) data > point
}
if (is.null(rfunctionsurv)) {
if (distribution == "exponential") {
if (!is.na(censorpoint) && censorpoint <= 0) {
stop(
"For an exponential distribution, `censorpoint` must be greater than zero."
)
}
rfunctionsurv = function(X, b) {
Y = rexp(n = nrow(X), rate = exp(-(X %*% b)))
condition = censorfunction(Y, censorpoint)
Y[condition] = censorpoint
return(survival::Surv(time = Y, event = !condition, type = censortype))
}
}
if (distribution == "lognormal") {
if (!is.na(censorpoint) && censorpoint <= 0) {
stop(
"For an lognormal distribution, `censorpoint` must be greater than zero."
)
}
rfunctionsurv = function(X, b) {
Y = rlnorm(n = nrow(X), meanlog = X %*% b, sdlog = 1)
condition = censorfunction(Y, censorpoint)
Y[condition] = censorpoint
return(survival::Surv(time = Y, event = !condition, type = censortype))
}
}
if (distribution == "gaussian") {
rfunctionsurv = function(X, b) {
Y = rnorm(n = nrow(X), mean = X %*% b, sd = 1)
condition = censorfunction(Y, censorpoint)
Y[condition] = censorpoint
return(survival::Surv(time = Y, event = !condition, type = censortype))
}
}
}
#------Normalize/Center numeric columns ------#
run_matrix_processed = normalize_design(run_matrix_processed)
#---------- Generating model matrix ----------#
#remove columns from variables not used in the model
RunMatrixReduced = reduceRunMatrix(run_matrix_processed, model)
contrastslist = list()
for (x in names(RunMatrixReduced)[
lapply(RunMatrixReduced, class) %in% c("character", "factor")
]) {
if (!(x %in% names(presetcontrasts))) {
contrastslist[[x]] = contrasts
stats::contrasts(RunMatrixReduced[[x]]) = contrasts
} else {
contrastslist[[x]] = presetcontrasts[[x]]
}
}
if (length(contrastslist) < 1) {
contrastslist = NULL
}
ModelMatrix = model.matrix(
model,
RunMatrixReduced,
contrasts.arg = contrastslist
)
#We'll need the parameter and effect names for output
parameter_names = colnames(ModelMatrix)
# autogenerate anticipated coefficients
if (!missing(anticoef) && !missing(effectsize)) {
warning(
"User defined anticipated coefficients (anticoef) detected; ignoring effectsize argument."
)
}
if (missing(anticoef)) {
default_coef = gen_anticoef(RunMatrixReduced, model, nointercept)
anticoef = anticoef_from_delta_surv(default_coef, effectsize, distribution)
if (!("(Intercept)" %in% colnames(ModelMatrix))) {
anticoef = anticoef[-1]
}
}
if (length(anticoef) != dim(ModelMatrix)[2]) {
stop("skpr: Wrong number of anticipated coefficients")
}
nparam = ncol(ModelMatrix)
RunMatrixReduced$Y = 1
#---------------- Run Simulations ---------------#
num_updates = min(c(nsim, 200))
progressbarupdates = floor(seq(1, nsim, length.out = num_updates))
progresscurrent = 1
pvallist = list()
estimates = matrix(0, nrow = nsim, ncol = nparam)
if (!parallel) {
power_values = rep(0, ncol(ModelMatrix))
if (interactive() && progress) {
pb = progress::progress_bar$new(
format = sprintf(
" Calculating Power [:bar] (:current/:total, :tick_rate sim/s) ETA: :eta"
),
total = nsim,
clear = TRUE,
width = 100
)
}
for (j in seq_len(nsim)) {
if (advancedoptions$GUI && !is.null(progressBarUpdater)) {
#This code is to slow down the number of updates in the Shiny app--if there
#are too many updates, the progress bar will lag behind the actual computation
if (j %in% progressbarupdates) {
progressBarUpdater(1 / num_updates)
}
}
#simulate the data.
anticoef_adjusted = anticoef
RunMatrixReduced$Y = rfunctionsurv(ModelMatrix, anticoef_adjusted)
model_formula = update.formula(model, Y ~ .)
#fit a model to the simulated data.
surv_mat = as.matrix(RunMatrixReduced$Y)
number_censored = sum(surv_mat[, 2] == 0)
if (number_censored == nrow(RunMatrixReduced)) {
pvals = rep(1, length(parameter_names))
names(pvals) = parameter_names
estimates[j, ] = NA
} else {
fiterror = FALSE
tryCatch(
{
fit = survival::survreg(
model_formula,
data = RunMatrixReduced,
dist = distribution,
...
)
},
error = function(e) {
fiterror <<- TRUE
},
warning = function(w) {
if (
grepl(
"Ran out of iterations and did not converge",
as.character(w)
)
) {
fiterror <<- TRUE
}
}
)
#determine whether beta[i] is significant. If so, increment nsignificant
if (!fiterror && exists("fit")) {
pvals = extractPvalues(fit)[seq_len(ncol(ModelMatrix))]
vals = pvals[order(factor(names(pvals), levels = parameter_names))]
pvals[is.na(pvals)] = 1
stopifnot(all(names(pvals) == parameter_names))
estimates[j, ] = coef(fit)
} else {
pvals = rep(1, length(parameter_names))
names(pvals) = parameter_names
estimates[j, ] = NA
}
}
pvallist[[j]] = pvals
power_values[pvals < alpha] = power_values[pvals < alpha] + 1
}
power_values = power_values / nsim
pvals = do.call(rbind, pvallist)
if (interactive() && progress && !advancedoptions$GUI) {
pb$tick()
}
} else {
if (!getOption("skpr_progress", TRUE)) {
progressbarupdates = c()
}
if (!advancedoptions$GUI && progress) {
set_up_progressr_handler("Evaluating", "sims")
}
nc = future::nbrOfWorkers()
run_search = function(iterations, is_shiny, surv_args) {
prog = progressr::progressor(steps = nsim)
foreach::foreach(
i = iterations,
.errorhandling = "remove",
.options.future = list(
packages = "survival",
globals = c(
"extractPvalues",
"rfunctionsurv",
"parameter_names",
"progress",
"progressbarupdates",
"model",
"distribution",
"RunMatrixReduced",
"model.matrix",
"anticoef",
"nc",
"prog",
"is_shiny",
"num_updates",
"nsim",
"alpha",
"surv_args"
),
seed = TRUE
)
) %dofuture%
{
if (i %in% progressbarupdates) {
if (is_shiny) {
prog(sprintf(" (%i workers) ", nc), amount = nsim / num_updates)
} else {
prog(amount = nsim / num_updates)
}
}
power_values = rep(0, ncol(ModelMatrix))
#simulate the data.
RunMatrixReduced$Y = rfunctionsurv(ModelMatrix, anticoef)
model_formula = update.formula(model, Y ~ .)
surv_args$formula = model_formula
surv_args$data = RunMatrixReduced
surv_args$dist = distribution
surv_mat = as.matrix(RunMatrixReduced$Y)
number_censored = sum(surv_mat[, 2] == 0)
if (number_censored == nrow(RunMatrixReduced)) {
pvals = rep(1, length(parameter_names))
names(pvals) = parameter_names
estimates = rep(NA, length(parameter_names))
} else {
fiterror = FALSE
tryCatch(
{
fit = do.call("survreg", args = surv_args)
},
error = function(e) {
fiterror <<- TRUE
},
warning = function(w) {
if (
grepl(
"Ran out of iterations and did not converge",
as.character(w)
)
) {
fiterror <<- TRUE
}
}
)
#determine whether beta[i] is significant. If so, increment nsignificant
if (!fiterror && exists("fit")) {
pvals = extractPvalues(fit)[seq_len(ncol(ModelMatrix))]
vals = pvals[order(factor(
names(pvals),
levels = parameter_names
))]
pvals[is.na(pvals)] = 1
stopifnot(all(names(pvals) == parameter_names))
estimates = coef(fit)
} else {
pvals = rep(1, length(parameter_names))
names(pvals) = parameter_names
estimates = rep(NA, length(parameter_names))
}
}
power_values[pvals < alpha] = 1
list(
"parameterpower" = power_values,
"estimates" = estimates,
"pvals" = pvals
)
}
}
power_estimates = run_search(seq_len(nsim), advancedoptions$GUI, args)
power_values = apply(
do.call("rbind", lapply(power_estimates, \(x) x$parameterpower)),
2,
sum
) /
nsim
pvals = do.call("rbind", lapply(power_estimates, \(x) x$pvals))
estimates = do.call("rbind", lapply(power_estimates, \(x) x$estimates))
}
#output the results (tidy data format)
results = data.frame(
parameter = parameter_names,
type = "parameter.power.mc",
power = power_values
)
colnames(estimates) = parameter_names
attr(results, "estimates") = estimates
attr(results, "model.matrix") = ModelMatrix
attr(results, "anticoef") = anticoef
attr(results, "pvals") = pvals
attr(results, "alpha") = alpha
attr(results, "runmatrix") = RunMatrixReduced
if (detailedoutput) {
if (nrow(results) != length(anticoef)) {
results$anticoef = c(rep(NA, nrow(results) - length(anticoef)), anticoef)
} else {
results$anticoef = anticoef
}
results$alpha = alpha
results$trials = nrow(run_matrix_processed)
results$nsim = nsim
results = add_ci_bounds_mc_power(
results,
nsim = nsim,
conf = advancedoptions$ci_error_conf
)
attr(results, "mc.conf.int") = advancedoptions$ci_error_conf
}
if (!inherits(results, "skpr_eval_output")) {
class(results) = c("skpr_eval_output", class(results))
}
return(results)
}
globalVariables("i")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.