knitr::opts_chunk$set( warning = FALSE, message = FALSE, tidy = TRUE, cache=TRUE ) options(timeout = max(1000, getOption("timeout")))
In this article, we will show how to run IDclust on a SingleCellExperiment object of a single- cell RNA dataset of the mouse brain from "Joint profiling of histone modifications and transcriptome in single cells from mouse brain,Chenxu Zhu, Yanxiao Zhang, Yang Eric Li, Jacinta Lucero, . Margarita Behrens, Bing Ren, Nature Methods, 2021 Paired-Tag"
library(IDclust) library(ChromSCape)
Download, extract & format scRNA of the mouse brain (Zhu et al., 2021) from the GEO portal.
set.seed(47) # Download dataset temp = tempfile() tempdir = tempdir() download.file("https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE152020&format=file&file=GSE152020%5FPaired%2DTag%5FH3K27ac%5FDNA%5Ffiltered%5Fmatrix%2Etar%2Egz", temp, quiet = TRUE) untar(temp, exdir = tempdir) # Download metadata annot = tempfile() download.file("http://catlas.org/pairedTag/cellbrowser/Paired-tag/meta.tsv", annot, quiet = TRUE) metadata = read.table(annot, sep = "\t", header = TRUE) rownames(metadata) = metadata$Cell_ID metadata = metadata[which(metadata$Target == "H3K27ac"),] features = read.table(file.path(tempdir, "04.Paired-Tag_H3K27ac_DNA_filtered_matrix", "bins.tsv"), row.names = NULL, header = F, sep = "\t")[,1, drop = F] write.table(features, file = file.path(tempdir, "04.Paired-Tag_H3K27ac_DNA_filtered_matrix", "features.tsv"), row.names = F, col.names = F, quote = F) # Create SingleCellExperiment object out = ChromSCape::read_sparse_matrix(file.path(tempdir, "04.Paired-Tag_H3K27ac_DNA_filtered_matrix")) out$datamatrix = out$datamatrix[, match(metadata$Cell_ID, gsub(".*_", "", colnames(out$datamatrix)))] scExp = ChromSCape::create_scExp(out$datamatrix, out$annot_raw) SummarizedExperiment::colData(scExp) = cbind(SingleCellExperiment::colData(scExp), metadata) # Subsample cells scExp = scExp[,sample(ncol(scExp), 5000, replace = F)]
We then run a ChromSCape LSI normalization and dimensionality reduction. We can plot the UMAP and color by the cell type.
scExp <- ChromSCape::find_top_features(scExp,n = 100000, keep_others = FALSE, verbose = FALSE) scExp <- ChromSCape::feature_annotation_scExp(scExp, ref = "mm10") scExp <- ChromSCape::normalize_scExp(scExp, type = "TFIDF") scExp <- ChromSCape::reduce_dims_scExp(scExp, dimension_reductions = c("PCA", "UMAP"), n = 10, remove_PC = "Component_1", verbose = F) ChromSCape::plot_reduced_dim_scExp(scExp, color_by = "Annotation", reduced_dim = "UMAP")
We can run a classical Louvain clustering to see the clusters.
scExp <- ChromSCape::find_clusters_louvain_scExp(scExp) ChromSCape::plot_reduced_dim_scExp(scExp, color_by = "cell_cluster", reduced_dim = "UMAP")
We can now run the Iterative Differential Clustering, that will re-process and re-cluster each cluster iteratively and find subclusters with significant differences between each other.
By default for a SingleCellExperiment object the processing_ChromSCape function is used for re-processing and the differential_ChromSCape function is used to find significant marker genes.
set.seed(47) output_dir = "~/Tests/IDC_scExp/" if(!dir.exists(output_dir)) dir.create(output_dir) scExp = iterative_differential_clustering( scExp, output_dir = output_dir, plotting = FALSE, saving = TRUE, n_dims = 10, dim_red = "PCA", vizualization_dim_red = "UMAP", processing_function = processing_ChromSCape, differential_function = differential_ChromSCape, logFC.th = log2(1.5), qval.th = 0.01, quantile.activation = 0.7, min_frac_cell_assigned = 0.1, limit = 5, limit_by_proportion = NULL, starting.resolution = 0.1, starting.k = 100, resolution = 0.8, k = 100, verbose = FALSE )
We can now read in the output 'IDC_summary' object and plot the cluster hierarchies compared to the author clusters. On this plot, each node is a cluster. The colors represent the distribution of author cluster within each cluster. Link between nodes represent a hierarchy in the iteration. The width of the edges is proportional to the number of genes found.
IDC_summary = qs::qread(file.path(output_dir, "IDC_summary.qs")) plot_cluster_network(scExp, IDC_summary = IDC_summary, color_by = "Annotation", node_size_factor = 4, legend = FALSE)
A 'IDcluster' column was added to the SingleCellExperiment object, which we can now project the cluster found this way on the UMAP.
ChromSCape::plot_reduced_dim_scExp(scExp, reduced_dim = "UMAP", color_by = "IDcluster", annotate_clusters = F)
We can also plot particular marker genes in the cluster network by changing the 'color_by' parameter to a gene present in the SingleCellExperiment object.
plot_cluster_network(scExp, IDC_summary = IDC_summary, color_by = "Foxg1", threshold_to_define_feature_active = 2, legend = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.