plot_cluster_network | R Documentation |
Plot Iterative Differential Clustering network
Plot Iterative Differential Clustering network
Plot Iterative Differential Clustering network
plot_cluster_network(object, ...)
## Default S3 method:
plot_cluster_network(
object,
IDC_summary,
color_by = "IDcluster",
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
threshold_to_define_feature_active = 1,
max_distanceToTSS = 1000,
gene_col = "Gene",
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE),
legend = TRUE,
edge_df = NULL,
...
)
## S3 method for class 'Seurat'
plot_cluster_network(
object,
IDC_summary = NULL,
color_by = "IDcluster",
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
threshold_to_define_feature_active = 2,
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE),
assay = "RNA",
legend = TRUE,
edge_df = NULL,
...
)
object |
A Seurat object clustered with |
... |
Additional parameters passed to the plot function. |
IDC_summary |
Optional. A data.frame of differential
analyses summary outputed by |
color_by |
A character specifying the column of the Seurat to use for coloring the nodes. |
cluster_col |
A character specifying the column of the Seurat to use to store the iterative differential clusters. |
colors |
A character vector of colors. If NULL, will take R default color. |
node_size_factor |
A numeric specifying a multiplicator of the size of the nodes. |
edge_size_factor |
A numeric specifying a multiplicator of the size of the edges. |
threshold_to_define_feature_active |
If color_by is a gene, an integer specifying the threshold above which a gene is considered as active in any given cell. |
max_distanceToTSS |
If color_by is a gene, the maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name. |
gene_col |
If color_by is a gene, a character specifying the column in the rowData of the object |
function_layout |
A function of g for the layout of the graph. |
legend |
A logical indicating whether to plot the legend or not. |
edge_df |
(Optional). A data.frame obtained by
|
assay |
If color_by is a gene, the assay in which to retrieve the counts. |
A hierarchical network of cluster assignation:
Size of nodes reflects the number of cells
Width of edges reflects the number of differential features defining a cluster
Color of nodes reflects the repartition of cells according to 'color_by'
A hierarchical network of cluster assignation:
Size of nodes reflects the number of cells
Width of edges reflects the number of differential features defining a cluster
Color of nodes reflects the repartition of cells according to 'color_by'
# Plotting of Seurat scRNA object (Paired-Tag)
if(requireNamespace("Seurat", quietly=TRUE)){
data("Seu", package = "IDclust")
data("IDC_summary_scRNA", package = "IDclust")
plot_cluster_network(
object = Seu,
IDC_summary = IDC_summary_scRNA,
color_by = "IDcluster",
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE)
)
# Plotting proportion of cells activating a specific gene in Seurat scRNA
# object (Paired-Tag)
plot_cluster_network(
object = Seu,
IDC_summary = IDC_summary_scRNA,
color_by = "Erbb4", # a gene contained in the Seu object
threshold_to_define_feature_active = 2,
assay = "RNA",
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE)
)
# Plotting cluster networ with the pathway information on the edges:
data("IDC_DA_scRNA", package = "IDclust")
edge_df = top_enriched_pathways(
IDC_DA_scRNA,
top = 5,
gene_col = "gene",
qval.th = 0.1)
plot_cluster_network(
object = Seu,
IDC_summary = IDC_summary_scRNA,
edge_df = edge_df
)
}
# Clustering of scExp scH3K27ac object (Paired-Tag)
if(requireNamespace("ChromSCape", quietly=TRUE)){
data("scExp", package = "IDclust")
data("IDC_summary_scEpigenomics", package = "IDclust")
plot_cluster_network(
object = scExp,
IDC_summary = IDC_summary_scEpigenomics,
color_by = "IDcluster",
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE),
edge_df = topmarkers
)
# Plotting proportion of cells activating a specific gene in scExp scH3K27ac
# object (Paired-Tag)
plot_cluster_network(
object = scExp,
IDC_summary = IDC_summary_scEpigenomics,
color_by = "Tcf4", # a gene contained in the scExp object
threshold_to_define_feature_active = 1,
gene_col = "Gene",
max_distanceToTSS = 1000,
cluster_col = "IDcluster",
colors = NULL,
node_size_factor = 7.5,
edge_size_factor = 1,
function_layout = function(g) igraph::layout_as_tree(g, root = 1, circular = TRUE,
flip.y = FALSE)
)
# Adding on the edges the 3 top markers of each clusters in scExp H3K27ac
# object (Paired-Tag)
# Adding gene information in the IDC_DA
data("IDC_DA_scEpigenomics", package = "IDclust")
IDC_DA_scEpigenomics = add_gene_to_DA_list(
scExp = scExp,
IDC_DA = IDC_DA_scEpigenomics
)
# Finding the 3 top markers per cluster
topmarkers = top_differential_markers(
IDC_DA_scEpigenomics,
top = 3,
gene_col = "Gene",
logFC_col = "logFC",
qvalue_col = "qval",
order_by = "logFC_col",
pseudogene_pattern = "Rik|Vmn|Gm|AW"
)
# Concatenate top 3 markers per cluster/cluster_of_origin
topmarkers = topmarkers %>% dplyr::group_by(cluster_of_origin, cluster) %>%
dplyr::summarise(Term = paste(Gene, collapse = " "))
plot_cluster_network(
object = scExp,
IDC_summary = IDC_summary_scEpigenomics,
edge_df = topmarkers
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.