####################
# QTLModelCIM_oneS #
####################
# function to compute single position one stage QTL model with cofactors (CIM)
QTLModelCIM_oneS <- function(x, plot_data, mppData, trait, nEnv, EnvNames,
Q.eff, VCOV, exp_des_form, cof.list, cof.part,
plot.gen.eff, workspace){
# process the QTL incidence matrix
QTL <- inc_mat_QTL(x = x, mppData = mppData, Q.eff = Q.eff,
order.MAF = TRUE)
rownames(QTL) <- mppData$geno.id
ref.name <- colnames(QTL)
Env_name <- rep(paste0("_E", 1:nEnv), each = length(ref.name))
ref.name <- paste0(c(ref.name, ref.name), Env_name)
QTLenv <- diag(nEnv) %x% QTL
colnames(QTLenv) <- ref.name
QTL.el <- dim(QTLenv)[2]
# process the cofactors elements
cof.mat <- do.call(cbind, cof.list[which(cof.part[x, ])])
# test if no cofactors
if(is.null(cof.mat)){ cof.mat <- rep(0, length(mppData$geno.id)); cof.el <- 1
} else {
cof.mat <- diag(nEnv) %x% cof.mat
cof.el <- dim(cof.mat)[2]
}
# Form a unique dataset with cofactors and QTL to distribute it on the data
QTLdat <- data.frame(genotype = rep(mppData$geno.id, nEnv), cof.mat, QTLenv,
stringsAsFactors = FALSE)
# form the dataset
ind_row <- split(1:dim(QTLdat)[1], factor(sort(rank(1:dim(QTLdat)[1])%%nEnv)))
dataset <- c()
for(i in 1:nEnv){
data_i <- plot_data[plot_data$env == EnvNames[i], ]
Q_data_i <- QTLdat[ind_row[[i]], ]
data_i <- merge(data_i, Q_data_i, by = c("genotype"), all.x = TRUE)
dataset <- rbind(dataset, data_i)
}
# add colnames cofactors and QTL
n_cof <- dim(plot_data)[2]
colnames(dataset) <- c(colnames(dataset)[1:n_cof], paste0("cof", 1:cof.el),
paste0("Q",1:QTL.el))
dataset$cross_env <- factor(paste0(as.character(dataset$cross),
as.character(dataset$env)))
dataset$genotype[dataset$check != 'genotype'] <- NA
if(VCOV %in% c('CSRT', 'CS_CSRT')){
dataset <- dataset[order(dataset$cross), ]
} else { # AR1xAR1 VCOVs
dataset <- dataset[order(dataset$env, dataset$col, dataset$row), ]
dataset$env <- factor(as.character(dataset$env))
dataset$col <- factor(as.character(dataset$col))
dataset$row <- factor(as.character(dataset$row))
}
# determine mixed model formula
formula.QTL <- paste("+", paste0("Q", 1:QTL.el), collapse = " ")
formula.fix <- paste(trait, "~ -1 + env:check + env:cross + grp(cof)", formula.QTL)
# random and rcov formulas
formulas <- mod_formulas_oneS(VCOV = VCOV, exp_des_form = exp_des_form)
# compute the mixed model
model <- tryCatch(asreml::asreml(fixed = as.formula(formula.fix),
random = as.formula(formulas[1]),
rcov = as.formula(formulas[2]), data = dataset,
group = list(cof = (n_cof + 1):(n_cof + cof.el)),
trace = FALSE, na.method.Y = "include",
na.method.X = "include",
keep.order = TRUE,
workspace = workspace),
error = function(e) NULL)
# Get the results
if (is.null(model)){
if(plot.gen.eff) {
if(Q.eff == "cr"){ results <- c(0, rep(1, nEnv * mppData$n.cr))
} else if (Q.eff == "biall") { results <- c(0, rep(1, nEnv))
} else { results <- c(0, rep(1, nEnv * mppData$n.par)) }
} else { results <- 0 }
} else {
W.stat <- sum(asreml::wald(model)[4:(QTL.el+3), 3])
if(W.stat == 0){
if(plot.gen.eff) {
if(Q.eff == "cr"){ results <- c(0, rep(1, nEnv * mppData$n.cr))
} else if (Q.eff == "biall") { results <- c(0, rep(1, nEnv))
} else { results <- c(0, rep(1, nEnv * mppData$n.par)) }
} else { results <- 0 }
} else {
df <- sum(asreml::wald(model)[4:(QTL.el+3), 1])
pval <- pchisq(W.stat, df, lower.tail = FALSE)
results <- -log10(pval)
if(plot.gen.eff){
gen.eff <- QTL_pval_mix_GE(mppData = mppData, model = model,
nEnv = nEnv, Q.eff = Q.eff,
QTL.el = QTL.el, x = x, ref.name = ref.name,
par.names = mppData$parents, fct = "CIM",
mod = 'M4')
results <- c(results, gen.eff)
}
}
}
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.