R/lorenz.curve.R

Defines functions lorenz.curve

Documented in lorenz.curve

#' Lorenz Curve
#' 
#' Plots the Lorenz curve that is a graphical representation of the cumulative 
#' distribution function. The user can choose between the Lorenz curve with single (default)
#' or multiple weighting of data, for example, taking into account for single or multiple
#' legislature representatives \insertCite{Gastwirth_1972}{lawstat}. 
#' 
#' The input data should be a data frame with 2 columns. The first column will be 
#' treated as data vector, and the second column to be treated as a weight vector. 
#' Alternatively, data and weights can be entered as separate one-column vectors.
#' 
#'
#' @param data input data. If the argument is an array, a matrix, a data.frame, or a list 
#' with two or more columns, then the first column will be treated as a data vector, 
#' and the second column to be treated as a weight vector. A separate weight vector is 
#' then ignored and not required. If the argument is a single column vector, then a user 
#' must enter a separate single-column weight vector. 
#' \code{NA}s or character are not allowed.
#' @param weight one-column vector contains factors of single or multiple weights. 
#' Ignored if included in the \code{data} argument. 
#' \code{NA}s or character are not allowed.
#' @param mul logical value indicates whether the Lorenz curve with multiple weight 
#' is to be plotted. Default is \code{FALSE}, i.e., single.
#' @param plot.it logical value indicates whether the Lorenz curve should be plotted. 
#' Default is \code{TRUE}, i.e., to plot.
#' @param main title of Lorenz curve. Only required if user wants to override the default value.
#' @param xlab label of x-axis. Only required if user wants to override the default value.
#' @param ylab label of y-axis. Only required if user wants to override the default value.
#' @param xlim plotting range of x-axis. Only required if user wants to override the default value.
#' @param ylim plotting range of y-axis. Only required if user wants to override the default value.
#' @param ... other graphical parameters to be passed to the \code{\link[graphics]{plot}} function.
#'
#'
#' @return A Lorenz curve plot with x-axis being the culmulative fraction of the 
#' data argument, and y-axis being the culmulative fraction of the weight argument. 
#' In the legend to the plot, the following values are reported: 
#' \item{RMD}{relative mean deviation of the input data.}
#' \item{GI}{the Gini index of the input data.}
#' \item{L(1/2)}{median of the culmulative fraction sum of the data.}
#' 
#' @references
#' \insertAllCited{}
#' 
#' @seealso \code{\link{gini.index}}
#' 
#' @keywords plot
#' 
#' @author Man Jin, Wallace W. Hui, Yulia R. Gel, Joseph L. Gastwirth
#' 
#' @export
#' @examples
#' ## Data on: number of senators (second column) and 
#' ## representatives (third column) relative to population size (first column) in 1963
#' ## First column is treated as the data argument.
#' data(data1963)
#' 
#' ## Single weight Lorenz Curve using number of senators as weight argument.
#' lorenz.curve(data1963)
#' 
#' ## Multiple weight Lorenz Curve using number of senators as weight argument.
#' lorenz.curve(data1963, mul = TRUE)
#' 
#' ## Multiple weight Lorenz Curve using number of representatives 
#' ## as weight argument.
#' lorenz.curve(data1963[, "pop1963"], data1963[, "rep1963"], mul = TRUE)
#' 
lorenz.curve <- function(data,
                           weight = NULL,
                           mul = FALSE,
                           plot.it = TRUE,
                           main = NULL,
                           xlab = NULL,
                           ylab = NULL,
                           xlim = c(0, 1),
                           ylim = c(0, 1),
                           ...)
{
    ### Function for the lorenz curve. Lorenz Single is the default and
    ### Lorenz Multiple is an option. The input data should be
    ### a data frame with 2 columns. The first column will be treated
    ### as a data vector, and the second column to be treated as weight vector.
    ### Alternatively, data and weight can be entered as separate one-column vectors.
    
    
    ### Check length of data and weight vectors ###
    if (any(is.na(data))) {
        stop("NAs in data. Please try again.")
    }
    
    if (is.vector(data) &
        !(is.list(data) &
          length(data) > 1) |
        (is.data.frame(data) & length(data) == 1))
    {
        if (is.null(weight)) {
            stop("A single-column weight vector is required. Please try again.")
        }
        
        if (!(is.vector(weight)) |
            (is.list(weight) & length(weight) > 1)) {
            stop("The weight input is not a single-column vector. Please try again.")
        }
        
        if (any(is.na(weight))) {
            stop("NAs in the weight vector. Please try again.")
        }
        
        dframe = data.frame(data, weight)
        names(dframe)[1] = deparse(substitute(data))
        names(dframe)[2] = deparse(substitute(weight))
    }
    
    else{
        dframe = data.frame(data)[1:2]
    }
    
    if (any(is.na(dframe[, 1])) |
        is.factor(dframe[, 1]) | is.character(dframe[, 1])) {
        stop("The first column contains invalid input. Please try again.")
    }
    
    if (any(is.na(dframe[, 2])) |
        is.factor(dframe[, 2]) | is.character(dframe[, 2])) {
        stop("The second column contains invalid input. Please try again.")
    }
    
    
    
    ### Process the data vector based on weighting###
    
    
    if (mul)
    {
        vv = NULL
        
        for (k in 1:nrow(dframe))
        {
            if (dframe[k, 2] > 1) {
                vv = c(vv, rep(dframe[k, 2] / dframe[k, 1], dframe[k, 2]))
            }
            else{
                vv = c(vv, dframe[k, 2] / dframe[k, 1])
            }
        }
        if (is.null(main)) {
            main = "Lorenz Curve Multiple"
        }
    }
    
    else{
        vv = dframe[, 2] / dframe[, 1]
        if (is.null(main)) {
            main = "Lorenz Curve"
        }
    }
    
    
    nn <- length(vv)
    relative.mean.dev <-
        1 / nn * sum(abs(vv - mean(vv))) / mean(vv)
    
    d <- 0
    for (i in 1:nn)
    {
        for (j in 1:nn)
            d <- d + abs(vv[i] - vv[j])
    }
    
    ### gini index ###
    gini <- d / nn / (nn - 1) / 2 / mean(vv)
    # RDR<-(max(vv)-min(vv))/mean(vv)
    case <- sort(vv)
    
    tot <- sum(case)
    qs <- case / tot
    qa <- c(0)
    qscomp <- c(qa, qs)
    y <- cumsum(qscomp)
    x <- seq(0, 1, 1 / (length(qs)))
    par(mfrow = c(1, 1))
    
    
    if (plot.it) {
        if (is.null(xlab)) {
            xlab = paste("Cumulative fraction of", names(dframe)[1])
        }
        if (is.null(ylab)) {
            ylab = paste("Cumulative fraction of", names(dframe)[2])
        }
        
        plot(
            x,
            y,
            type = "l",
            xaxs = "i",
            yaxs = "i",
            main = main,
            xlab = xlab,
            ylab = ylab,
            xlim = xlim,
            ylim = ylim,
            ...
        ) ##Lorena Curve
        abline(0, 1, ...)
        xx <- x
        yy1 <- x
        yy2 <- y
        segments(xx, yy1, xx, yy2)    ################ add the lines in the curve area
        legend(0.05,
               0.8,
               "RMD =",
               bty = "n",
               cex = 0.6)
        legend(0.18,
               0.8,
               round(relative.mean.dev, 3),
               bty = "n",
               cex = 0.6)
        legend(0.05,
               0.75,
               "GI =",
               bty = "n",
               cex = 0.6)
        legend(0.18,
               0.75,
               round(gini, 3),
               bty = "n",
               cex = 0.6)
        # legend(0.05,0.7,"RDR=",bty="n", cex=0.6)
        # legend(0.18,0.7,round(RDR,3),bty="n", cex=0.6)
        legend(0.05, 0.65, "L(1/2) =", bty = "n", cex = 0.6)
        legend(0.18,
               0.65,
               round(median(y), 3),
               bty = "n",
               cex = 0.6)
    }
    
}
vlyubchich/lawstat documentation built on April 17, 2023, 12:47 a.m.