#' autocalibration
#'
#' @description 'autocalibration' simplified version of auto-calibration from R package GGIR without temperature and without loading the data in blocks
#'
#' @param data data.frame with accelerometer time series
#' @param sr Sampling rate in Hertz
#' @param printsummary Boolean to indicate whether calibration summary should be printed
#' @param brand Character of sensor brand: "ActiGraph", "activPAL", "Acttrust", "Axivity", "GENEActiv", or "MOX".
#' @return List of objects identical to g.calibrate function R package GGIR
#' @importFrom stats sd lm.wfit
#' @export
autocalibration = function(data, sr, printsummary= TRUE, brand) {
# simplified version of auto-calibration from R package GGIR
# without temperature and without loading the data in blocks
# now includes old g.downsampling function removed from GGIR...
spherecrit=0.3
minloadcrit=72
# printsummary=TRUE
windowsizes=c(5,600,600)
use.temp = FALSE
# filename = unlist(strsplit(as.character(datafile),"/"))
# filename = filename[length(filename)]
# set parameters
filequality = data.frame(filetooshort=FALSE,filecorrupt=FALSE,
filedoesnotholdday = FALSE, stringsAsFactors = TRUE)
ws4 = 10 #epoch for recalibration, don't change
ws2 = windowsizes[2] #dummy variable
ws = windowsizes[3] # window size for assessing non-wear time (seconds)
i = 1 #counter to keep track of which binary block is being read
count = 1 #counter to keep track of the number of seconds that have been read
LD = 2 #dummy variable used to identify end of file and to make the process stop
cal.error.start=cal.error.end=c()
spheredata=c()
tempoffset=c()
npoints=c()
PreviousEndPage = c() # needed for g.readaccfile
scale = c(1,1,1)
offset = c(0,0,0)
bsc_qc = data.frame(time=c(),size=c(),stringsAsFactors = FALSE)
#inspect file
op <- options(stringsAsFactors = FALSE)
on.exit(options(op))
#creating matrixes for storing output
S = matrix(0,0,4) #dummy variable needed to cope with head-tailing succeeding blocks of data
NR = ceiling((90*10^6) / (sr*ws4)) + 1000 #NR = number of 'ws4' second rows (this is for 10 days at 80 Hz)
meta = matrix(99999,NR,7)
LD = nrow(data)
#store data that could not be used for this block, but will be added to next block
use = (floor(LD / (ws*sr))) * (ws*sr) #number of datapoint to use
if (length(use) > 0) {
if (use > 0) {
if (use != LD) {
S = as.matrix(data[(use+1):LD,]) #store left over # as.matrix removed on 22May2019 because redundant
#S = data[(use+1):LD,] #store left over
}
data = as.matrix(data[1:use,])
LD = nrow(data) #redefine LD because there is less data
##==================================================
dur = nrow(data) #duration of experiment in data points
durexp = nrow(data) / (sr*ws) #duration of experiment in hrs
# Initialization of variables
# if (dformat != 5) {
# }
data = as.data.frame(data)
data$X = as.numeric(data$X)
data$Y = as.numeric(data$Y)
data$Z = as.numeric(data$Z)
Gx = data[,2]; Gy = data[,3]; Gz = data[,4]
#=============================================
# non-integer sampling rate is a pain for deriving epoch based sd
# however, with an epoch of 10 seconds it is an integer number of samples per epoch
g.downsample = function(sig,fs,ws3,ws2) {
#averaging per second => var1
sig2 =cumsum(c(0,sig))
select = seq(1,length(sig2),by=fs)
var1 = diff(sig2[round(select)]) / abs(diff(round(select[1:(length(select))])))
#averaging per ws3 => var2 (e.g. 5 seconds)
select = seq(1,length(sig2),by=fs*ws3)
var2 = diff(sig2[round(select)]) / abs(diff(round(select[1:(length(select))])))
#averaging per ws2 => var3 (e.g. 15 minutes)
select = seq(1,length(sig2),by=fs*ws2)
var3 = diff(sig2[round(select)]) / abs(diff(round(select[1:(length(select))])))
invisible(list(var1=var1,var2=var2,var3=var3))
}
EN = sqrt(Gx^2 + Gy^2 + Gz^2)
D1 = g.downsample(EN,sr,ws4,ws2)
EN2 = D1$var2
#mean acceleration
D1 = g.downsample(Gx,sr,ws4,ws2); GxM2 = D1$var2
D1 = g.downsample(Gy,sr,ws4,ws2); GyM2 = D1$var2
D1 = g.downsample(Gz,sr,ws4,ws2); GzM2 = D1$var2
#sd acceleration
dim(Gx) = c(sr*ws4,ceiling(length(Gx)/(sr*ws4))); GxSD2 = apply(Gx,2,sd)
dim(Gy) = c(sr*ws4,ceiling(length(Gy)/(sr*ws4))); GySD2 = apply(Gy,2,sd)
dim(Gz) = c(sr*ws4,ceiling(length(Gz)/(sr*ws4))); GzSD2 = apply(Gz,2,sd)
#-----------------------------------------------------
#expand 'out' if it is expected to be too short
if (count > (nrow(meta) - (2.5*(3600/ws4) *24))) {
extension = matrix(99999,((3600/ws4) *24),ncol(meta))
meta = rbind(meta,extension)
# cat("\nVariable meta extended\n")
}
#storing in output matrix
meta[count:(count-1+length(EN2)),1] = EN2
meta[count:(count-1+length(EN2)),2] = GxM2
meta[count:(count-1+length(EN2)),3] = GyM2
meta[count:(count-1+length(EN2)),4] = GzM2
meta[count:(count-1+length(EN2)),5] = GxSD2
meta[count:(count-1+length(EN2)),6] = GySD2
meta[count:(count-1+length(EN2)),7] = GzSD2
count = count + length(EN2) #increasing "count": the indicator of how many seconds have been read
rm(Gx); rm(Gy); rm(Gz)
}
#--------------------------------------------
}
spherepopulated = 0
meta_temp = data.frame(V = meta, stringsAsFactors = FALSE)
cut = which(meta_temp[,1] == 99999)
if (length(cut) > 0) {
meta_temp = meta_temp[-cut,]
}
nhoursused = (nrow(meta_temp) * 10)/3600
if (nrow(meta_temp) > minloadcrit) { # enough data for the sphere?
meta_temp = meta_temp[-1,]
#select parts with no movement
if (brand == "MOX") {
sdcriter = 0.03 # MOX seems to have too much variation in X-axis
} else {
sdcriter = 0.013
}
nomovement = which(meta_temp[,5] < sdcriter & meta_temp[,6] < sdcriter & meta_temp[,7] < sdcriter &
abs(as.numeric(meta_temp[,2])) < 2 & abs(as.numeric(meta_temp[,3])) < 2 &
abs(as.numeric(meta_temp[,4])) < 2) #the latter three are to reduce chance of including clipping periods
meta_temp = meta_temp[nomovement,]
rm(nomovement)
if (min(dim(meta_temp)) > 1) {
meta_temp = meta_temp[(is.na(meta_temp[,4]) == F & is.na(meta_temp[,1]) == F),]
npoints = nrow(meta_temp)
cal.error.start = sqrt(as.numeric(meta_temp[,2])^2 + as.numeric(meta_temp[,3])^2 + as.numeric(meta_temp[,4])^2)
cal.error.start = round(mean(abs(cal.error.start - 1)), digits = 5)
#check whether sphere is well populated
tel = 0
for (axis in 2:4) {
if ( min(meta_temp[,axis]) < -spherecrit & max(meta_temp[,axis]) > spherecrit) {
tel = tel + 1
}
}
if (tel == 3) {
spherepopulated = 1
} else {
spherepopulated = 0
QC = "recalibration not done because not enough points on all sides of the sphere"
}
} else {
cat(" No non-movement found\n")
QC = "recalibration not done because no non-movement data available"
meta_temp = c()
}
} else {
QC = "recalibration not done because not enough data in the file or because file is corrupt"
}
if (spherepopulated == 1) { #only try to improve calibration if there are enough datapoints around the sphere
#---------------------------------------------------------------------------
# START of Zhou Fang's code (slightly edited by vtv21 to use matrix meta_temp from above
# instead the similar matrix generated by Zhou Fang's original code. This to allow for
# more data to be used as meta_temp can now be based on 10 or more days of raw data
input = meta_temp[,2:4] #as.matrix()
inputtemp = matrix(0, nrow(input), ncol(input)) #temperature, here used as a dummy variable
meantemp = mean(as.numeric(inputtemp[,1]),na.rm=TRUE)
inputtemp = inputtemp - meantemp
offset = rep(0, ncol(input))
scale = rep(1, ncol(input))
tempoffset = rep(0, ncol(input))
weights = rep(1, nrow(input))
res = Inf
maxiter = 1000
tol = 1e-10
for (iter in 1:maxiter) {
curr = c()
try(expr={curr = scale(input, center = -offset, scale = 1/scale) +
scale(inputtemp, center = F, scale = 1/tempoffset)},silent=TRUE)
if (length(curr) == 0) {
# set coefficients to default, because it did not work.
cat("\nObject curr has length zero.")
break
}
closestpoint = curr/ sqrt(rowSums(curr^2))
k = 1
offsetch = rep(0, ncol(input))
scalech = rep(1,ncol(input))
toffch = rep(0, ncol(inputtemp))
for (k in 1:ncol(input)){
invi = which(is.na(closestpoint[,k, drop = F]) == TRUE)
if (length(invi) > 0) {
closestpoint = closestpoint[-invi,]
curr = curr[-invi,]
inputtemp = inputtemp[-invi,]
input = input[-invi,]
weights = weights[-invi]
}
fobj = lm.wfit(cbind(1, curr[,k],inputtemp[,k]) , closestpoint[,k, drop = F], w = weights)
offsetch[k] = fobj$coef[1]
scalech[k] = fobj$coef[2]
if (use.temp == TRUE) {
toffch[k] = fobj$coeff[3]
}
curr[,k] = fobj$fitted.values
}
offset = offset + offsetch / (scale * scalech)
if (use.temp == TRUE) {
tempoffset = tempoffset * scalech + toffch
}
scale = scale * scalech
res = c(res, 3 * mean(weights*(curr-closestpoint)^2/ sum(weights)))
weights = pmin(1/ sqrt(rowSums((curr - closestpoint)^2)), 1/0.01)
if (abs(res[iter+1] - res[iter]) < tol) break
}
if (use.temp == FALSE) {
meta_temp2 = scale(as.matrix(meta_temp[,2:4]),center = -offset, scale = 1/scale)
} else {
yy = as.matrix(cbind(as.numeric(meta_temp[,8]),as.numeric(meta_temp[,8]),as.numeric(meta_temp[,8])))
meta_temp2 = scale(as.matrix(meta_temp[,2:4]),center = -offset, scale = 1/scale) +
scale(yy, center = rep(meantemp,3), scale = 1/tempoffset)
} #equals: D2[,axis] = (D[,axis] + offset[axis]) / (1/scale[axis])
# END of Zhou Fang's code
#-------------------------------------------
cal.error.end = sqrt(meta_temp2[,1]^2 + meta_temp2[,2]^2 + meta_temp2[,3]^2)
rm(meta_temp2)
cal.error.end = round(mean(abs(cal.error.end-1)), digits = 5)
# assess whether calibration error has sufficiently been improved
if (cal.error.end < cal.error.start & cal.error.end < 0.01 & nhoursused > minloadcrit) { #do not change scaling if there is no evidence that calibration improves
LD = 0 #stop loading
} else { #continue loading data
if (nhoursused > minloadcrit) {
print(paste("new calibration error: ",cal.error.end," g",sep=""))
print(paste("npoints around sphere: ", npoints,sep=""))
}
QC = "recalibration attempted with all available data, but possibly not good enough: Check calibration error variable to varify this"
}
}
if (length(cal.error.end) > 0) {
if (cal.error.end > cal.error.start) {
QC = "recalibration not done because recalibration does not decrease error"
}
}
if (length(ncol(meta_temp)) != 0) {
spheredata = data.frame(A = meta_temp, stringsAsFactors = TRUE)
if (use.temp == TRUE) {
names(spheredata) = c("Euclidean Norm","meanx","meany","meanz","sdx","sdy","sdz","temperature")
} else {
names(spheredata) = c("Euclidean Norm","meanx","meany","meanz","sdx","sdy","sdz")
}
} else {
spheredata = c()
}
rm(meta_temp)
QCmessage = QC
if (printsummary == TRUE) {
# cat(paste0(rep('_ ',options()$width),collapse=''))
cat("\nSummary of autocalibration procedure:")
cat("\n")
cat(paste0("\nStatus: ",QCmessage))
cat(paste0("\nCalibration error (g) before: ",cal.error.start))
cat(paste0("\nCallibration error (g) after: ",cal.error.end))
cat(paste0("\nOffset correction ",c("x","y","z"),": ",offset))
cat(paste0("\nScale correction ",c("x","y","z"),": ",scale))
cat(paste0("\nNumber of hours used: ",nhoursused))
cat(paste0("\nNumber of 10 second windows around the sphere: ",npoints))
cat(paste0("\nTemperature used (if available): ",use.temp))
cat(paste0("\nTemperature offset (if temperature is available) ",c("x","y","z"),": ",tempoffset))
cat("\n")
# cat(paste0(rep('_',options()$width),collapse=''))
}
invisible(list(scale=scale, offset=offset, tempoffset=tempoffset,
cal.error.start=cal.error.start, cal.error.end=cal.error.end,
spheredata=spheredata, npoints=npoints, nhoursused=nhoursused,
QCmessage=QCmessage, use.temp=use.temp, bsc_qc=bsc_qc))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.