ContrastsPlotter | R Documentation |
plot contrasts
plot contrasts
contrastDF
data frame with contrasts
modelName
of column with model name
subject_Id
hierarchy key columns
prefix
default Contrasts - used to generate file names
diff
column with fold change differences
contrast
column with contrasts names, default "contrast"
volcano_spec
volcano plot specification
score_spec
score plot specification
histogram_spec
plot specification
fcthresh
fold change threshold
avg.abundance
name of column containing avg abundance values.
protein_annot
protein annotation
new()
create Crontrast_Plotter
ContrastsPlotter$new( contrastDF, subject_Id, volcano = list(list(score = "FDR", thresh = 0.1)), histogram = list(list(score = "p.value", xlim = c(0, 1, 0.05)), list(score = "FDR", xlim = c(0, 1, 0.05))), score = list(list(score = "statistic", thresh = NULL)), fcthresh = 1, modelName = "modelName", diff = "diff", contrast = "contrast", avg.abundance = "avgAbd", protein_annot = NULL )
contrastDF
frame with contrast data
subject_Id
columns containing subject Identifier
volcano
which score to plot and which ablines to add.
histogram
which scores to plot and which range (x) should be shown.
score
score parameters
fcthresh
default 1 (log2 FC threshold)
modelName
name of column with model names
diff
fold change (difference) diff column
contrast
contrast column
avg.abundance
name of column with average abundance
protein_annot
add protein annotation (optional)
histogram()
plot histogram of selected scores (e.g. p-value, FDR, t-statistics)
ContrastsPlotter$histogram()
histogram_estimate()
plot histogram of effect size - difference between groups
ContrastsPlotter$histogram_estimate(binwidth = 0.05)
binwidth
with of bin in histogram
histogram_diff()
plot histogram of differences (diff) fold change
ContrastsPlotter$histogram_diff(binwidth = 0.05)
binwidth
with of bin in histogram
volcano()
volcano plots (fold change vs FDR)
ContrastsPlotter$volcano( colour, legend = TRUE, scales = c("fixed", "free", "free_x", "free_y"), min_score = 1e-04 )
colour
column name with color information default modelName
legend
default TRUE
scales
default fixed facet_wrap
, scales argument
min_score
replace p.values or FDR's smaller then min_score with min_score (default 0.0001).
volcano_plotly()
plotly volcano plots
ContrastsPlotter$volcano_plotly( colour, legend = TRUE, scales = c("fixed", "free", "free_x", "free_y"), min_score = 1e-04 )
colour
column in contrast matrix with colour coding
legend
default TRUE
scales
default fixed facet_wrap
, scales argument
min_score
replace p.values or FDR's smaller then min_score with min_score (default 0.0001).
list of ggplots
ma_plot()
ma plot
MA plot displays the effect size estimate as a function of the mean protein intensity across groups. Each dot represents an observed protein. Red horizontal lines represent the fold-change threshold.
Sometimes measured effects sizes (differences between samples groups) are biased by the signal intensity (here protein abundance). Such systematic effects can be explored using MA-plots.
ContrastsPlotter$ma_plot(fc, colour, legend = TRUE, rank = TRUE)
fc
fold change abline
colour
column in contrast matrix with colour coding
legend
enable legend default TRUE
rank
default FALSE, if TRUE then rank of avgAbd is used.
ggplot
ma_plotly()
ma plotly
ContrastsPlotter$ma_plotly(fc, colour, legend = TRUE, rank = FALSE)
fc
horizontal lines
colour
column in contrast matrix with colour coding.
legend
enable legend default TRUE
rank
default FALSE, if TRUE then rank of avgAbd is used.
list of ggplots
score_plot()
plot a score against the log2 fc e.g. t-statistic
ContrastsPlotter$score_plot(scorespec, colour, legend = TRUE)
scorespec
list(score="statistics", fcthres = 2, thresh = 5)
colour
column with colour coding
legend
enable legend default TRUE
list of ggplots
score_plotly()
plot a score against the log2 fc e.g. t-statistic
ContrastsPlotter$score_plotly(scorespec, colour, legend = TRUE)
scorespec
list(score="statistics", fcthres = 2, thresh = 5)
colour
column with colour coding
legend
enable legend default TRUE
list of ggplots
barplot_threshold()
shows the number of significant proteins per contrasts
ContrastsPlotter$barplot_threshold()
list which contains ggplots and summary tables
clone()
The objects of this class are cloneable with this method.
ContrastsPlotter$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
Other plotting:
INTERNAL_FUNCTIONS_BY_FAMILY
,
UpSet_interaction_missing_stats()
,
UpSet_missing_stats()
,
medpolish_estimate_df()
,
missigness_histogram()
,
missingness_per_condition()
,
missingness_per_condition_cumsum()
,
plot_NA_heatmap()
,
plot_estimate()
,
plot_heatmap()
,
plot_heatmap_cor()
,
plot_hierarchies_add_quantline()
,
plot_hierarchies_boxplot_df()
,
plot_hierarchies_line()
,
plot_hierarchies_line_df()
,
plot_intensity_distribution_violin()
,
plot_pca()
,
plot_raster()
,
plot_sample_correlation()
,
plot_screeplot()
istar <- sim_lfq_data_peptide_config(Nprot = 100)
modelName <- "Model"
modelFunction <-
strategy_lmer("abundance ~ group_ + (1 | peptide_Id) + (1|sample)",
model_name = modelName)
pepIntensity <- istar$data
config <- istar$config
mod <- build_model(
pepIntensity,
modelFunction,
modelName = modelName,
subject_Id = config$table$hierarchy_keys_depth())
Contr <- c("group_A_vs_Ctrl" = "group_A - group_Ctrl",
"group_B_vs_Ctrl" = "group_B - group_Ctrl"
)
contrast <- prolfqua::Contrasts$new(mod,
Contr)
contr <- contrast$get_contrasts()
cp <- ContrastsPlotter$new(contr,
contrast$subject_Id,
volcano = list(list(score = "FDR", thresh = 0.1)),
histogram = list(list(score = "p.value", xlim = c(0,1,0.05)),
list(score = "FDR", xlim = c(0,1,0.05))),
score =list(list(score = "statistic", thresh = 5))
)
stopifnot("plotly" %in% class(cp$volcano_plotly()$FDR))
stopifnot("ggplot" %in% class(cp$score_plot(legend=FALSE)$statistic))
p <- cp$histogram()
stopifnot("ggplot" %in% class(p$FDR))
stopifnot("ggplot" %in% class(p$p.value))
p <- cp$histogram_estimate()
stopifnot("ggplot" %in% class(p))
res <- cp$volcano()
stopifnot("ggplot" %in% class(res$FDR))
respltly <- cp$volcano_plotly()
stopifnot("plotly" %in% class(respltly$FDR))
stopifnot("ggplot" %in% class(cp$ma_plot()))
stopifnot("plotly" %in% class(cp$ma_plotly(rank=TRUE)))
res <- cp$barplot_threshold()
stopifnot("ggplot" %in% class(res$FDR$plot))
stopifnot("ggplot" %in% class(cp$histogram_diff()))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.