R/DAISIE_format_CS.R

Defines functions DAISIE_format_CS DAISIE_format_CS_trait

Documented in DAISIE_format_CS

#' Formats clade-specific simulation output into standard
#' DAISIE list output
#'
#' @param island_replicates Int stating number of replicates.
#' @param time Numeric double with total time of simulation.
#' @param M Int stating number of mainland species.
#' @param sample_freq Int stating how often results are sampled for plotting
#' @param start_midway Logical stating if simulation starts at t > 0.
#' @param verbose Logical controling if progress is printed to console.
#' @param Tpars A named list containing diversification rates considering two trait states:
#' \itemize{
#'   \item{[1]:A numeric with the per capita transition rate with state1}
#'   \item{[2]:A numeric with the per capita immigration rate with state2}
#'   \item{[3]:A numeric with the per capita extinction rate with state2}
#'   \item{[4]:A numeric with the per capita anagenesis rate with state2}
#'   \item{[5]:A numeric with the per capita cladogenesis rate with state2}
#'   \item{[6]:A numeric with the per capita transition rate with state2}
#'   \item{[7]:A numeric with the number of species with trait state 2 on mainland}
#' }
#' @return List with CS DAISIE simulation output
DAISIE_format_CS <- function(island_replicates,
                            time,
                            M,
                            sample_freq,
                            start_midway = FALSE,
                            verbose = TRUE,
                            Tpars = NULL)
{
  if (!is.null(Tpars)) {
    return(
      DAISIE_format_CS_trait(
        island_replicates = island_replicates,
        time = time,
        M = M,
        sample_freq = sample_freq,
        start_midway = start_midway,
        verbose = verbose,
        Tpars = Tpars
      )
    )
  }
  totaltime <- time
  several_islands <- list()

  for(rep in 1:length(island_replicates))
  {
    full_list <- island_replicates[[rep]]
    
    stac_vec <- unlist(full_list)[which(names(unlist(full_list)) == "stac")]
    number_not_present <- length(which(stac_vec == 0))
    present <- which(stac_vec!=0)
    number_present <- length(present)
    
    type_vec <- unlist(full_list)[which(names(unlist(full_list)) == "type1or2")]
    if(!length(which(type_vec == 2)) == 0 && !is.null(Tpars)){
      stop("Two species types and two trait states not considered simutanously.")
    }
    prop_type2_pool <- length(which(type_vec == 2)) / M
    
    number_type2_cols <- length(which(match(which(stac_vec != 0),which(type_vec == 2)) > 0))
    number_type1_cols <- number_present-number_type2_cols
    
    island_list <- list()
    for(i in 1:(number_present + 1))
    {
      island_list[[i]] = list()
    }
    
    ### all species
    stt_list = list()
    
    testit::assert(M > 0)
    for(i in 1:M)
    {
      stt_list[[i]] = full_list[[i]]$stt_table
    }
    stt_all = matrix(ncol = 5,nrow = sample_freq + 1)
    
    colnames(stt_all) = c("Time","nI","nA","nC","present")
    stt_all[,"Time"] = rev(seq(from = 0,to = totaltime,length.out = sample_freq + 1))
    if (start_midway == FALSE) {
      stt_all[1,2:5] = c(0,0,0,0)
    } else if (start_midway == TRUE) {
      for(x in 1:M)
      {
        stt_all[1,2:5] = stt_list[[x]][max(which(stt_list[[x]][,"Time"] >= totaltime)),2:4]
      }
    }
    for(i in 2:nrow(stt_all))
    {
      the_age = stt_all[i,"Time"]
      store_richness_time_slice = matrix(nrow = M,ncol = 3)
      colnames(store_richness_time_slice) = c("I","A","C")
      for(x in 1:M)
      {
        testit::assert(x >= 1)
        testit::assert(x <= length(stt_list))
        testit::assert("Time" %in% colnames(stt_list[[x]]))
        
        store_richness_time_slice[x,] = stt_list[[x]][max(which(stt_list[[x]][,"Time"] >= the_age)),2:4] # HERE 1
      }
      count_time_slice = store_richness_time_slice[,1] + store_richness_time_slice[,2] + store_richness_time_slice[,3]
      present_time_slice = rep(0,M)
      present_time_slice[which(count_time_slice>0)] = 1
      store_richness_time_slice = cbind(store_richness_time_slice,present_time_slice)
      stt_all[i,c(2:5)] = apply(store_richness_time_slice,2,sum)
    }
    
    if(number_type2_cols > 0)
    {
      if(!is.null(Tpars)){
        stop("Two species types and two trait states not considered simutanously.")
      }
      ######################################################### list type1
      stt_list_type1 = list()
      for(i in 1:max(which(type_vec == 1)))
      {
        stt_list_type1[[i]] = full_list[[i]]$stt_table
      }
      
      stt_type1  = matrix(ncol=5,nrow=sample_freq+1)
      colnames(stt_type1) = c("Time","nI","nA","nC","present")
      stt_type1[,"Time"] = rev(seq(from = 0,to = totaltime,length.out = sample_freq + 1))
      stt_type1[1,2:5] = c(0,0,0,0)
      
      for(i in 2:nrow(stt_type1))
      {
        the_age = stt_type1[i,"Time"]
        store_richness_time_slice = matrix(nrow=max(which(type_vec == 1)),ncol = 3)
        colnames(store_richness_time_slice) = c("I","A","C")
        for(x in 1:max(which(type_vec == 1)))
        {
          store_richness_time_slice[x,] = stt_list_type1[[x]][max(which(stt_list_type1[[x]][,"Time"] >= the_age)),2:4]
        }
        count_time_slice = store_richness_time_slice[,1] + store_richness_time_slice[,2] + store_richness_time_slice[,3]
        present_time_slice = rep(0,max(which(type_vec == 1)))
        present_time_slice[which(count_time_slice > 0)] = 1
        store_richness_time_slice = cbind(store_richness_time_slice,present_time_slice)
        stt_type1[i,c(2:5)] = apply(store_richness_time_slice,2,sum)
      }
      
      ######################################################### list type2
      type2len = length(which(type_vec == 2))
      
      stt_list_type2 = list()
      for(i in 1:type2len)
      {
        stt_list_type2[[i]] = full_list[[which(type_vec == 2)[i]]]$stt_table
      }
      
      stt_type2 = matrix(ncol = 5,nrow = sample_freq + 1)
      colnames(stt_type2) = c("Time","nI","nA","nC","present")
      stt_type2[,"Time"] = rev(seq(from = 0,to = totaltime,length.out = sample_freq + 1))
      stt_type2[1,2:5] = c(0,0,0,0)
      
      for(i in 2:nrow(stt_type2))
      {
        the_age = stt_type2[i,"Time"]
        store_richness_time_slice = matrix(nrow = type2len,ncol = 3)
        colnames(store_richness_time_slice) = c("I","A","C")
        for(x in 1:type2len)
        {
          store_richness_time_slice[x,] = stt_list_type2[[x]][max(which(stt_list_type2[[x]][,"Time"] >= the_age)),2:4]
        }
        count_time_slice = store_richness_time_slice[,1] + store_richness_time_slice[,2] + store_richness_time_slice[,3]
        present_time_slice = rep(0,prop_type2_pool * M)
        present_time_slice[which(count_time_slice > 0)] = 1
        store_richness_time_slice = cbind(store_richness_time_slice,present_time_slice)
        stt_type2[i,c(2:5)] = apply(store_richness_time_slice,2,sum)
      }
      
      island_list[[1]] = list(island_age = totaltime,not_present_type1 = DDD::roundn(M *(1 - prop_type2_pool)) - (number_type1_cols),not_present_type2 = DDD::roundn(M * prop_type2_pool) - number_type2_cols,stt_all = stt_all, stt_type1 = stt_type1,stt_type2 = stt_type2)
    } else {
      island_list[[1]] = list(island_age = totaltime,not_present = number_not_present, stt_all = stt_all)
    }
    
    if(number_present > 0)
    {
      for(i in 1:number_present)
      {
        island_list[[1 + i]] = full_list[[present[i]]]
        island_list[[1 + i]]$stt_table = NULL
      }
    }
    
    if(number_present == 0)
    {
      island_list = list()
      island_list[[1]] = list(island_age = totaltime,not_present = M, stt_all = stt_all)
      island_list[[2]] = list(branching_times= totaltime, stac = 0, missing_species = 0)
      
    }
    
    several_islands[[rep]] = island_list
    if (verbose == TRUE) {
      print(paste("Island being formatted: ",rep,"/",length(island_replicates),sep = ""))
    }
  }

  return(several_islands)
}

DAISIE_format_CS_trait <- function(island_replicates,
                             time,
                             M,
                             sample_freq,
                             start_midway = FALSE,
                             verbose = TRUE,
                             Tpars = NULL)
{
  totaltime <- time
  several_islands <- list()
  
  for(rep in 1:length(island_replicates))
  {
    full_list <- island_replicates[[rep]]
    
    stac_vec <- unlist(full_list)[which(names(unlist(full_list)) == "stac")]
    number_not_present <- length(which(stac_vec == 0))
    present <- which(stac_vec!=0)
    number_present <- length(present)
    
    type_vec <- unlist(full_list)[which(names(unlist(full_list)) == "type1or2")]
    if(!length(which(type_vec == 2)) == 0 && !is.null(Tpars)){
      stop("Two species types and two trait states not considered simutanously.")
    }
    prop_type2_pool <- length(which(type_vec == 2)) / M
    
    number_type2_cols <- length(which(match(which(stac_vec != 0),which(type_vec == 2)) > 0))
    number_type1_cols <- number_present-number_type2_cols
    
    island_list <- list()
    for(i in 1:(number_present + 1))
    {
      island_list[[i]] = list()
    }
    
    ### all species
    stt_list = list()
    
    
    for(i in 1:(M + Tpars$M2))
    {
      stt_list[[i]] = full_list[[i]]$stt_table
    }
    stt_all = matrix(ncol = 8,nrow = sample_freq + 1)
    
    colnames(stt_all) = c("Time","nI","nA","nC","nI2","nA2","nC2","present")
    stt_all[,"Time"] = rev(seq(from = 0,to = totaltime,length.out = sample_freq + 1))
    if (start_midway == FALSE) {
      stt_all[1,2:8] = c(0,0,0,0,0,0,0)
    } else if (start_midway == TRUE) {
      stop("No considering start midway with two trait states.")
    }
    for(i in 2:nrow(stt_all))
    {
      the_age = stt_all[i,"Time"]
      store_richness_time_slice = matrix(nrow = M + Tpars$M2,ncol = 6)
      colnames(store_richness_time_slice) = c("I","A","C","I2","A2","C2")
      for(x in 1:(M + Tpars$M2))
      {
        testit::assert(x >= 1)
        testit::assert(x <= length(stt_list))
        testit::assert(class(stt_list[[x]]) == "matrix")
        testit::assert("Time" %in% colnames(stt_list[[x]]))
        store_richness_time_slice[x,] = stt_list[[x]][max(which(stt_list[[x]][,"Time"] >= the_age)),2:7] # HERE 2
      }
      count_time_slice = store_richness_time_slice[,1] +
                         store_richness_time_slice[,2] +
                         store_richness_time_slice[,3] +
                         store_richness_time_slice[,4] +
                         store_richness_time_slice[,5] +
                         store_richness_time_slice[,6]
      present_time_slice = rep(0,M + Tpars$M2)
      present_time_slice[which(count_time_slice>0)] = 1
      store_richness_time_slice = cbind(store_richness_time_slice,present_time_slice)
      stt_all[i,c(2:8)] = apply(store_richness_time_slice,2,sum)
    }
    if(number_type2_cols > 0){
      stop("Two species types and two trait states not considered simutanously.")
    }
    
    island_list[[1]] = list(island_age = totaltime,not_present = number_not_present, stt_all = stt_all)
    
    
    if(number_present > 0)
    {
      for(i in 1:number_present)
      {
        island_list[[1 + i]] = full_list[[present[i]]]
        island_list[[1 + i]]$stt_table = NULL
      }
    }
    
    if(number_present == 0)
    {
      island_list = list()
      island_list[[1]] = list(island_age = totaltime,not_present = M, stt_all = stt_all)
      island_list[[2]] = list(branching_times= totaltime, stac = 0, missing_species = 0)
      
    }
    
    several_islands[[rep]] = island_list
    if (verbose == TRUE) {
      print(paste("Island being formatted: ",rep,"/",length(island_replicates),sep = ""))
    }
  }
  
  return(several_islands)
}
xieshu95/Test-Trasie documentation built on Dec. 18, 2019, 7:34 a.m.