kmini0 = function(dec2binmatk,lxm,lxe,sysdim = dim(dec2binmatk)[1])
{
posc = Matrix::rowSums(dec2binmatk)
negc = log2(sysdim) - posc
kmin = rep(negc,each = lxm * lxe)
dim(kmin) = c(lxm,lxe,sysdim)
ki = kimat(dec2binmatk)
res = list(kmin = kmin,ki = ki)
return(res)
}
nndivdep0 = function(lxm,lxe,sysdim,Kprime,M,k)
{
nnm = c(0,0:(lxm + 1))
nne = c(0,0,0:(lxe + 1))
lnnm = length(nnm)
lnne = length(nne)
nn = matrix(nnm,nrow = lnnm,ncol = lnne,byrow = F) +
matrix(nne,nrow = lnnm,ncol = lnne,byrow = T)
nn = replicate(sysdim,nn)
nil2lxm = 2:(lxm + 1)
nil2lxe = 3:(lxe + 2)
nile = rep(1,lxe)
allc = 1:sysdim
divdepfac = pmax(array(0,dim = c(lxm+3,lxe+4,sysdim)),1 - (nn + k)/Kprime)
divdepfacmin1 = pmax(array(0,dim = c(lxm+3,lxe+4,sysdim)),1 - (nn + k - 1)/Kprime)
divdepfac = divdepfac[nil2lxm,nil2lxe,allc]
divdepfacmin1 = divdepfacmin1[nil2lxm,nil2lxe,allc]
Mminm = M - nn[nil2lxm,nile,allc]
res = list(nn = nn,divdepfac = divdepfac,divdepfacmin1 = divdepfacmin1,Mminm = Mminm)
return(res)
}
DAISIE_loglik_rhs_IW0 = function(t,x,pars)
{
lac = pars[[1]][1]
mu = pars[[1]][2]
Kprime = pars[[1]][3]
gam = pars[[1]][4]
laa = pars[[1]][5]
M = pars[[1]][6]
kk = pars[[2]]
ddep = pars[[3]]
lxm = pars[[4]]$lxm
lxe = pars[[4]]$lxe
sysdim = pars[[4]]$sysdim
kmin = pars[[5]]$kmin
kplus = kk - kmin
ki = pars[[5]]$ki
nn = pars[[6]]$nn
divdepfac = pars[[6]]$divdepfac
divdepfacmin1 = pars[[6]]$divdepfacmin1
Mminm = pars[[6]]$Mminm
dim(x) = c(lxm,lxe,sysdim)
xx = array(0,dim = c(lxm+2,lxe+3,sysdim))
xx[2:(lxm+1),3:(lxe+2),1:sysdim] = x
nil2lxm = 2:(lxm + 1)
nil2lxe = 3:(lxe + 2)
allc = 1:sysdim
nile = rep(1,lxe)
nilm = rep(1,lxm)
Mminm2 = Mminm + 1 - kmin
Mminm2[Mminm2 < 0] = 0
Mminm[Mminm < 0] = 0
if(sysdim == 1)
{
dim(Mminm) = c(lxm,lxe)
}
dx = gam * divdepfacmin1 * Mminm2 * xx[nil2lxm-1,nil2lxe,allc] + #immigration
mu * nn[nil2lxm+1,nile,allc] * xx[nil2lxm+1,nil2lxe,allc] + #extinction non-endemics
mu * nn[nilm,nil2lxe+1,allc] * xx[nil2lxm,nil2lxe+1,allc] + #extinction endemics
lac * divdepfacmin1 * nn[nil2lxm+1,nile,allc] * xx[nil2lxm+1,nil2lxe-2,allc] + #cladogenesis non-endemics
lac * divdepfacmin1 * nn[nilm,nil2lxe-1,allc] * xx[nil2lxm,nil2lxe-1,allc] + #cladogenesis endemics
2 * kplus * lac * divdepfacmin1 * xx[nil2lxm,nil2lxe-1,allc] + #cladogenesis species in tree
laa * nn[nil2lxm+1,nile,allc] * xx[nil2lxm+1,nil2lxe-1,allc] + #anagenesis non-endemics
-(laa * (nn[nil2lxm,nile,allc] + kmin) + (gam * divdepfac * Mminm) +
(lac * divdepfac + mu) * (nn[nil2lxm,nil2lxe,allc] + kk)) * xx[nil2lxm,nil2lxe,allc]
if(sysdim > 1)
{
dx = dx +
laa * tensor::tensor(xx[nil2lxm,nil2lxe,allc],ki,3,2) + # anagenesis in colonizing lineage
2 * lac * divdepfacmin1 * tensor::tensor(xx[nil2lxm,nil2lxe-1,allc],ki,3,2) # cladogenesis in colonizing lineage
}
dim(dx) = c(sysdim * lxm * lxe,1)
return(list(dx))
}
DAISIE_loglik_IW0 = function(
pars1,
pars2,
datalist,
methode = "ode45",
abstolint = 1E-16,
reltolint = 1E-14,
verbose = verbose
)
{
# pars1 = model parameters
# - pars1[1] = lac = (initial) cladogenesis rate
# - pars1[2] = mu = extinction rate
# - pars1[3] = K = maximum number of species possible in the clade
# - pars1[4] = gam = (initial) immigration rate
# - pars1[5] = laa = (initial) anagenesis rate
# - pars1[6] = M = number of mainland species
# pars2 = model settings
# - pars2[1] = lx = length of ODE variable x
# - pars2[2] = ddep = diversity-dependent model,mode of diversity-dependence
# . ddep == 0 : no diversity-dependence
# . ddep == 1 : linear dependence in speciation rate (anagenesis and cladogenesis)
# . ddep == 11 : linear dependence in speciation rate and immigration rate
# . ddep == 3 : linear dependence in extinction rate
# - pars2[3] = cond = conditioning
# . cond == 0 : no conditioning
# . cond == 1 : conditioning on presence on the island (not used in this single loglikelihood)
# - pars2[4] = parameters and likelihood should be printed (1) or not (0)
brts = c(-abs(datalist[[1]]$brts_table[,1]),0)
clade = datalist[[1]]$brts_table[,2]
event = datalist[[1]]$brts_table[,3]
pars1 = as.numeric(pars1)
ddep = pars2[2]
cond = pars2[3]
lac = pars1[1]
mu = pars1[2]
Kprime = pars1[3]
if(ddep == 0)
{
Kprime = Inf
}
gam = pars1[4]
laa = pars1[5]
M = pars1[6]
if(min(pars1) < 0)
{
cat('One or more parameters are negative.\n')
loglik = -Inf
return(loglik)
}
if((ddep == 1 | ddep == 11) & ceiling(Kprime) < length(brts))
{
if (verbose) {
cat('The proposed value of K is incompatible with the number of species
in the clade. Likelihood for this parameter set
will be set to -Inf. \n')
}
loglik = -Inf
return(loglik)
}
if(ddep == 1 | ddep == 11)
{
lx = min(1 + ceiling(Kprime),DDD::roundn(pars2[1]) )
} else {
lx = DDD::roundn(pars2[1])
}
lxm = min(lx,M + 1)
lxe = lx
sysdimchange = 1
sysdim = 1
totdim = lxm * lxe * sysdim
probs = rep(0,totdim)
probs[1] = 1
loglik = 0
expandvec = NULL
for(k in 0:(length(brts) - 2))
{
if(pars2[4] == 2)
{
print(paste('k = ',k,', sysdim = ',sysdim,sep = ''))
utils::flush.console()
}
dime = list(lxm = lxm,lxe = lxe,sysdim = sysdim)
if(sysdimchange == 1)
{
if(sysdim > 1)
{
dec2binmatk = dec2binmat(log2(sysdim))
kmi = kmini0(dec2binmatk,lxm,lxe,sysdim)
} else if(sysdim == 1)
{
kmi = list(kmin = 0,ki = NULL)
}
sysdimchange = 0
}
nndd = nndivdep0(lxm,lxe,sysdim,Kprime,M,k)
parslist = list(pars = pars1,kk = k,ddep = ddep,dime = dime,kmi = kmi,nndd = nndd)
y = deSolve::ode(y = probs,times = brts[(k + 1):(k + 2)],func = DAISIE_loglik_rhs_IW,parms = parslist,rtol = reltolint,atol = abstolint,method = methode)
probs = y[2,2:(totdim + 1)]
cp = checkprobs2(NA, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]]
dim(probs) = c(lxm,lxe,sysdim)
if(k < (length(brts) - 2))
{
divdepfac = nndd$divdepfac
if(event[k + 2] == 1)
{
#Mminmminl = nndd$Mminm - kmi$kmin
Mminmminl = nndd$Mminm - clade[k + 1]
Mminmminl[Mminmminl < 0] = 0
probs = gam * divdepfac * Mminmminl * probs[,,1:sysdim]
probs = c(probs,rep(0,totdim))
sysdim = sysdim * 2
expandvec = c(expandvec,clade[k + 2])
sysdimchange = 1
} else
{
probs = lac * divdepfac * probs[,,1:sysdim]
if(event[k + 2] == 2)
{
tocollapse = which(expandvec == clade[k + 2])
sr = selectrows(sysdim,2^(tocollapse - 1))
probs = probs[,,sr[,1]] + probs[,,sr[,2]]
sysdim = sysdim / 2
dim(probs) = c(lxm,lxe,sysdim)
expandvec = expandvec[-tocollapse]
sysdimchange = 1
}
}
cp = checkprobs2(NA, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]]
totdim = lxm * lxe * sysdim
dim(probs) = c(totdim,1)
#print(head(probs,n = 5))
}
}
dim(probs) = c(lxm,lxe,sysdim)
expandedclades = which(pracma::histc(clade,1:length(clade))$cnt == 1)
status = rep(0,lexpandedclades <- length(expandedclades))
if(lexpandedclades > 0)
{
for(i in lexpandedclades:1)
{
if(datalist[[1 + expandedclades[i]]]$stac == 2)
{
status[i] = 1
}
}
}
endemic = 0
nonendemic = 0
for(i in 2:length(datalist))
{
endemic = endemic + (datalist[[i]]$stac == 5)
nonendemic = nonendemic + (datalist[[i]]$stac == 1) + (datalist[[i]]$stac == 3)
}
if(length(status) > 0)
{
decstatus = bin2dec(status)
} else
{
decstatus = 0
}
print(loglik + log(probs))
loglik = loglik + log(probs[1 + nonendemic,1 + endemic,1 + decstatus])
if(cond > 0)
{
sysdim = 1
totdim = lxm * lxe * sysdim
dime = list(lxm = lxm,lxe = lxe,sysdim = sysdim)
probs = rep(0,totdim)
probs[1] = 1
kmi = list(kmin = 0,ki = NULL)
nndd = nndivdep0(lxm,lxe,sysdim,Kprime,M,k = 0)
parslist = list(pars = pars1,kk = k,ddep = ddep,dime = dime,kmi = kmi,nndd = nndd)
y = deSolve::ode(y = probs,times = brts[(k + 1):(k + 2)],func = DAISIE_loglik_rhs_IW0,parms = parslist,rtol = reltolint,atol = abstolint,method = methode)
probs = y[2,2:(totdim + 1)]
dim(probs) = c(lxm,lxe,sysdim)
logcond = log(1 - probs[1,1,1])
loglik = loglik - logcond
}
if(pars2[4] > 0)
{
s1 = sprintf('Parameters: %f %f %f %f %f %d',pars1[1],pars1[2],pars1[3],pars1[4],pars1[5],pars1[6])
s2 = sprintf(', Loglikelihood: %f',loglik)
cat(s1,s2,"\n",sep = "")
utils::flush.console()
}
return(as.numeric(loglik))
}
DAISIE_loglik_IW_M1 <- function(
pars1,
pars2,
brts,
stac,
missnumspec,
methode = "ode45",
abstolint = 1E-16,
reltolint = 1E-14,
verbose
)
{
# pars1 = model parameters
# - pars1[1] = lac = (initial) cladogenesis rate
# - pars1[2] = mu = extinction rate
# - pars1[3] = K = maximum number of species possible in the clade
# - pars1[4] = gam = (initial) immigration rate
# - pars1[5] = laa = (initial) anagenesis rate
# pars2 = model settings
# - pars2[1] = lx = length of ODE variable x
# - pars2[2] = ddep = diversity-dependent model,mode of diversity-dependence
# . ddep == 0 : no diversity-dependence
# . ddep == 1 : linear dependence in speciation rate (anagenesis and cladogenesis)
# . ddep == 11 : linear dependence in speciation rate and immigration rate
# . ddep == 3 : linear dependence in extinction rate
# - pars2[3] = cond = conditioning
# . cond == 0 : no conditioning
# . cond == 1 : conditioning on presence on the island (not used in this single loglikelihood)
# - pars2[4] = parameters and likelihood should be printed (1) or not (0)
if(is.na(pars2[4]))
{
pars2[4] = 0
}
ddep = pars2[2]
cond = pars2[3]
brts = c(-abs(brts),0)
pars1 = as.numeric(pars1)
lac = pars1[1]
mu = pars1[2]
Kprime = pars1[3]
if(ddep == 0)
{
Kprime = Inf
}
gam = pars1[4]
laa = pars1[5]
pars1[6] = 1
M = pars1[6]
if(min(pars1) < 0)
{
cat('One or more parameters are negative.\n')
loglik = -Inf
return(loglik)
}
if(ddep == 1 | ddep == 11)
{
lx = min(1 + ceiling(Kprime),round(pars2[1]) )
} else
{
lx = DDD::roundn(pars2[1])
}
lxm = min(lx,M + 1)
lxe = lx
sysdimchange = 1
sysdim = 1
totdim = lxm * lxe * sysdim
probs = rep(0,totdim)
probs[1] = 1
loglik = 0
expandvec = NULL
for(k in 0:(length(brts) - 2))
{
if(pars2[4] == 2)
{
print(paste('k = ',k,', sysdim = ',sysdim,sep = ''))
utils::flush.console()
}
dime = list(lxm = lxm,lxe = lxe,sysdim = sysdim)
if(sysdimchange == 1)
{
if(sysdim > 1)
{
dec2binmatk = dec2binmat(log2(sysdim))
kmi = kmini0(dec2binmatk,lxm,lxe,sysdim)
} else if(sysdim == 1)
{
kmi = list(kmin = 0,ki = NULL)
}
sysdimchange = 0
}
nndd = nndivdep0(lxm,lxe,sysdim,Kprime,M,k)
parslist = list(pars = pars1,kk = k,ddep = ddep,dime = dime,kmi = kmi,nndd = nndd)
y = deSolve::ode(y = probs,times = brts[(k + 1):(k + 2)],func = DAISIE_loglik_rhs_IW0,parms = parslist,rtol = reltolint,atol = abstolint,method = methode)
probs = y[2,2:(totdim + 1)]
cp = checkprobs2(NA, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]]
dim(probs) = c(lxm,lxe,sysdim)
if(k < (length(brts) - 2))
{
divdepfac = nndd$divdepfac
if(k == 0)
{
#Mminmminl = nndd$Mminm - kmi$kmin
Mminmminl = nndd$Mminm
Mminmminl[Mminmminl < 0] = 0
probs = gam * divdepfac * Mminmminl * probs[,,1:sysdim]
probs = c(probs,rep(0,totdim))
sysdim = 2
sysdimchange = 1
} else
{
probs = lac * divdepfac * probs[,,1:sysdim]
if(k == 1)
{
probs = probs[,,1] + probs[,,2]
sysdim = 1
dim(probs) = c(lxm,lxe,sysdim)
sysdimchange = 1
}
}
cp = checkprobs2(NA, loglik, probs, verbose); loglik = cp[[1]]; probs = cp[[2]]
totdim = lxm * lxe * sysdim
dim(probs) = c(totdim,1)
}
}
dim(probs) = c(lxm,lxe,sysdim)
endemic = (stac == 5)
nonendemic = (stac == 1) + (stac == 3)
decstatus = (stac == 2) * (sysdim > 1) #when stac = 4, decstatus = 0
#print(probs)
loglik = loglik + log(probs[1 + nonendemic,1 + endemic,1 + decstatus])
if(pars2[4] > 0)
{
s1 = sprintf('Parameters: %f %f %f %f %f %d',pars1[1],pars1[2],pars1[3],pars1[4],pars1[5],pars1[6])
s2 = sprintf(', Loglikelihood: %f',loglik)
cat(s1,s2,"\n",sep = "")
utils::flush.console()
}
return(as.numeric(loglik))
}
DAISIE_loglik_IW0_choosepar = function(
trparsopt,
trparsfix,
idparsopt,
idparsfix,
pars2,
datalist,
methode,
abstolint,
reltolint
)
{
trpars1 = rep(0,6)
trpars1[idparsopt] = trparsopt
if(length(idparsfix) != 0)
{
trpars1[idparsfix] = trparsfix
}
if(max(trpars1) > 1 | min(trpars1) < 0)
{
loglik = -Inf
} else {
pars1 = trpars1/(1 - trpars1)
if(min(pars1) < 0)
{
loglik = -Inf
} else {
loglik = DAISIE_loglik_IW0(pars1,pars2,datalist,methode,abstolint,reltolint)
}
if(is.nan(loglik) || is.na(loglik))
{
cat("There are parameter values used which cause numerical problems.\n")
loglik = -Inf
}
}
return(loglik)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.