R/Gene_Centric_Coding_Results_Summary_incl_ptv.R

Defines functions Gene_Centric_Coding_Results_Summary_incl_ptv

Documented in Gene_Centric_Coding_Results_Summary_incl_ptv

#' Summarize gene-centric coding analysis results generated by \code{STAARpipeline} package and
#' perform conditional analysis for (unconditionally) significant coding masks (including masks ptv and ptv_ds) by adjusting for a given list of known variants
#'
#' The \code{Gene_Centric_Coding_Results_Summary_incl_ptv} function takes in the objects of gene-centric coding analysis results
#' generated by \code{STAARpipeline} package,
#' the object from fitting the null model, and the set of known variants to be adjusted for in conditional analysis
#' to summarize the gene-centric coding analysis results and analyze the conditional association between a quantitative/dichotomous phenotype
#' (including imbalanced case-control design) and
#' the rare variants in the unconditional significant coding masks.
#' @param agds_dir file directory of annotated GDS (aGDS) files for all chromosomes (1-22)
#' @param gene_centric_coding_jobs_num the number of gene-centric coding analysis results generated by \code{STAARpipeline} package.
#' @param input_path the directory of gene-centric coding analysis results that generated by \code{STAARpipeline} package.
#' @param output_path the directory for the output files.
#' @param gene_centric_results_name file name of gene-centric coding analysis results generated by \code{STAARpipeline} package.
#' @param obj_nullmodel an object from fitting the null model, which is either the output from \code{fit_nullmodel} function in the \code{STAARpipeline} package,
#' or the output from \code{fitNullModel} function in the \code{GENESIS} package and transformed using the \code{genesis2staar_nullmodel} function in the \code{STAARpipeline} package.
#' @param known_loci the data frame of variants to be adjusted for in conditional analysis and should
#' contain 4 columns in the following order: chromosome (CHR), position (POS), reference allele (REF),
#' and alternative allele (ALT) (default = NULL).
#' @param cMAC_cutoff the cutoff of the minimum number of the cumulative minor allele of variants in the masks
#' when summarizing the results (default = 0).
#' @param method_cond a character value indicating the method for conditional analysis.
#' \code{optimal} refers to regressing residuals from the null model on \code{known_loci}
#' as well as all covariates used in fitting the null model (fully adjusted) and taking the residuals;
#' \code{naive} refers to regressing residuals from the null model on \code{known_loci}
#' and taking the residuals (default = \code{optimal}).
#' @param rare_maf_cutoff the cutoff of maximum minor allele frequency in
#' defining rare variants (default = 0.01).
#' @param QC_label channel name of the QC label in the GDS/aGDS file  (default = "annotation/filter").
#' @param variant_type type of variant included in the analysis. Choices include "SNV", "Indel", or "variant" (default = "SNV").
#' @param geno_missing_imputation method of handling missing genotypes. Either "mean" or "minor" (default = "mean").
#' @param Annotation_dir channel name of the annotations in the aGDS file \cr (default = "annotation/info/FunctionalAnnotation").
#' @param Annotation_name_catalog a data frame containing the name and the corresponding channel name in the aGDS file.
#' @param Use_annotation_weights use annotations as weights or not (default = FALSE).
#' @param Annotation_name a vector of annotation names used in STAAR (default = NULL).
#' @param alpha p-value threshold of significant results (default = 2.5E-06).
#' @param manhattan_plot output manhattan plot or not (default = FALSE).
#' @param QQ_plot output Q-Q plot or not (default = FALSE).
#' @param cond_null_model_name the null model name for conditional analysis in the SPA setting, only used for imbalanced case-control setting (default = NULL).
#' @param cond_null_model_dir the directory of storing the null model for conditional analysis in the SPA setting, only used for imbalanced case-control setting (default = NULL).
#' @param SPA_p_filter logical: are only the variants with a normal approximation based p-value smaller than a pre-specified threshold use the SPA method to recalculate the p-value, only used for imbalanced case-control setting (default = FALSE).
#' @param p_filter_cutoff threshold for the p-value recalculation using the SPA method, only used for imbalanced case-control setting (default = 0.05).
#' @return The function returns the following analysis results:
#' @return \code{coding_sig.csv}: a matrix that summarizes the unconditional significant coding masks detected by STAAR-O or STAAR-B in imbalanced case-control setting (STAAR-O/-B pvalue smaller than the threshold alpha),
#' including gene name ("Gene name"), chromosome ("chr"), coding functional category ("Category"), number of variants  ("#SNV"),
#' and unconditional p-values of set-based tests SKAT ("SKAT(1,25)"), Burden ("Burden(1,1)"), ACAT-V ("ACAT-V(1,25)") and STAAR-O ("STAAR-O")
#' or unconditional p-values of set-based tests Burden ("Burden(1,1)") and STAAR-B ("STAAR-B") for imbalanced case-control setting.
#' @return \code{coding_sig_cond.csv}: a matrix that summarized the conditional analysis results of unconditional significant coding masks detected by STAAR-O or STAAR-B in imbalanced case-control setting  (available if known_loci is not a NULL),
#' including gene name ("Gene name"), chromosome ("chr"), coding functional category ("Category"), number of variants  ("#SNV"),
#' and conditional p-values of set-based tests SKAT ("SKAT(1,25)"), Burden ("Burden(1,1)"), ACAT-V ("ACAT-V(1,25)") and STAAR-O ("STAAR-O")
#' or conditional p-values of set-based tests Burden ("Burden(1,1)") and STAAR-B ("STAAR-B") for imbalanced case-control setting.
#' @return \code{results_plof_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the putative loss of function variants (plof) for all protein-coding genes across the genome.
#' @return \code{plof_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant plof masks.
#' @return \code{plof_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant plof masks (available if known_loci is not a NULL).
#' @return \code{results_plof_ds_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the putative loss of function variants and disruptive missense variants (plof_ds) for all protein-coding genes across the genome.
#' @return \code{plof_ds_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant plof_ds masks.
#' @return \code{plof_ds_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant plof_ds masks (available if known_loci is not a NULL).
#' @return \code{results_ptv_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the protein-truncating variants (ptv) for all protein-coding genes across the genome.
#' @return \code{ptv_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant ptv masks.
#' @return \code{ptv_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant ptv masks (available if known_loci is not a NULL).
#' @return \code{results_ptv_ds_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the protein-truncating variants and disruptive missense variants (ptv_ds) for all protein-coding genes across the genome.
#' @return \code{ptv_ds_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant ptv_ds masks.
#' @return \code{ptv_ds_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant ptv_ds masks (available if known_loci is not a NULL).
#' @return \code{results_disruptive_missense_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the disruptive missense variants (disruptive_missense) for all protein-coding genes across the genome.
#' @return \code{disruptive_missense_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant disruptive_missense masks.
#' @return \code{disruptive_missense_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant disruptive_missense masks (available if known_loci is not a NULL).
#' @return \code{results_missense_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the missense variants (missense) for all protein-coding genes across the genome.
#' @return \code{missense_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant missense masks.
#' @return \code{missense_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant missense masks (available if known_loci is not a NULL).
#' @return \code{results_synonymous_genome.Rdata}: a matrix contains the STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the coding mask defined by the synonymous variants (synonymous) for all protein-coding genes across the genome.
#' @return \code{synonymous_sig.csv}: a matrix contains the unconditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant synonymous masks.
#' @return \code{synonymous_sig_cond.csv}: a matrix contains the conditional STAAR p-values (including STAAR-O or STAAR-B in imbalanced case-control setting) of the unconditional significant synonymous masks (available if known_loci is not a NULL).
#' @return manhattan plot (optional) and Q-Q plot (optional) of the gene-centric coding analysis results.
#' @references Li, Z., Li, X., et al. (2022). A framework for detecting
#' noncoding rare-variant associations of large-scale whole-genome sequencing
#' studies. \emph{Nature Methods}, \emph{19}(12), 1599-1611.
#' (\href{https://doi.org/10.1038/s41592-022-01640-x}{pub})
#' @export

Gene_Centric_Coding_Results_Summary_incl_ptv <- function(agds_dir,gene_centric_coding_jobs_num,input_path,output_path,gene_centric_results_name,
                                                         obj_nullmodel,known_loci=NULL,cMAC_cutoff=0,
                                                         method_cond=c("optimal","naive"),rare_maf_cutoff=0.01,
                                                         QC_label="annotation/filter",variant_type=c("SNV","Indel","variant"),geno_missing_imputation=c("mean","minor"),
                                                         Annotation_dir="annotation/info/FunctionalAnnotation",Annotation_name_catalog,
                                                         Use_annotation_weights=FALSE,Annotation_name=NULL,
                                                         alpha=2.5E-06,manhattan_plot=FALSE,QQ_plot=FALSE,
                                                         cond_null_model_name=NULL,cond_null_model_dir=NULL,
                                                         SPA_p_filter=FALSE,p_filter_cutoff=0.05){

	## evaluate choices
	method_cond <- match.arg(method_cond)
	variant_type <- match.arg(variant_type)
	geno_missing_imputation <- match.arg(geno_missing_imputation)

	## SPA status
	if(!is.null(obj_nullmodel$use_SPA))
	{
		use_SPA <- obj_nullmodel$use_SPA
	}else
	{
		use_SPA <- FALSE
	}

	#######################################################
	#     summarize unconditional analysis results
	#######################################################

	results_coding_genome <- c()

	for(kk in 1:gene_centric_coding_jobs_num)
	{
		print(kk)
		results_coding <- get(load(paste0(input_path,gene_centric_results_name,"_",kk,".Rdata")))

		results_coding_genome <- c(results_coding_genome,results_coding)
	}

	results_plof_genome <- c()
	results_plof_ds_genome <- c()
	results_missense_genome <- c()
	results_disruptive_missense_genome <- c()
	results_synonymous_genome <- c()
	results_ptv_genome <- c()
	results_ptv_ds_genome <- c()


	for(kk in 1:length(results_coding_genome))
	{
		results <- results_coding_genome[[kk]]

		if(is.null(results)==FALSE)
		{
			### plof
			if(results[3]=="plof")
			{
				results_plof_genome <- rbind(results_plof_genome,results)
			}
			### plof_ds
			if(results[3]=="plof_ds")
			{
				results_plof_ds_genome <- rbind(results_plof_ds_genome,results)
			}
			### missense
			if(results[3]=="missense")
			{
				results_missense_genome <- rbind(results_missense_genome,results)
			}
			### disruptive_missense
			if(results[3]=="disruptive_missense")
			{
				results_disruptive_missense_genome <- rbind(results_disruptive_missense_genome,results)
			}
			### synonymous
			if(results[3]=="synonymous")
			{
				results_synonymous_genome <- rbind(results_synonymous_genome,results)
			}
			### ptv
			if(results[3]=="ptv")
			{
				results_ptv_genome <- rbind(results_ptv_genome,results)
			}
			### ptv_ds
			if(results[3]=="ptv_ds")
			{
				results_ptv_ds_genome <- rbind(results_ptv_ds_genome,results)
			}
		}

		if(kk%%1000==0)
		{
			print(kk)
		}
	}

	###### cMAC_cutoff
	# plof
	results_plof_genome <- results_plof_genome[results_plof_genome[,"cMAC"]>cMAC_cutoff,]
	# plof + disruptive missense
	results_plof_ds_genome <- results_plof_ds_genome[results_plof_ds_genome[,"cMAC"]>cMAC_cutoff,]
	# missense
	results_missense_genome <- results_missense_genome[results_missense_genome[,"cMAC"]>cMAC_cutoff,]
	# disruptive missense
	results_disruptive_missense_genome <- results_disruptive_missense_genome[results_disruptive_missense_genome[,"cMAC"]>cMAC_cutoff,]
	# synonymous
	results_synonymous_genome <- results_synonymous_genome[results_synonymous_genome[,"cMAC"]>cMAC_cutoff,]
	# ptv
	results_ptv_genome <- results_ptv_genome[results_ptv_genome[,"cMAC"]>cMAC_cutoff,]
	# ptv + disruptive missense
	results_ptv_ds_genome <- results_ptv_ds_genome[results_ptv_ds_genome[,"cMAC"]>cMAC_cutoff,]

	### recalculate missense pvalue
	if(cMAC_cutoff > 0)
	{
		genes_name_disruptive_missense <- as.vector(unlist(results_disruptive_missense_genome[,1])) 
		genes_name_missense <- as.vector(unlist(results_missense_genome[,1])) 

		recal_id <- (1:dim(results_missense_genome)[1])[(!genes_name_missense%in%genes_name_disruptive_missense)]

		for(kk in recal_id)
		{
			print(kk)
			results_m <- results_missense_genome[kk,]
			
			if(use_SPA)
			{
				## disruptive missense cMAC < cut_off, set p-value to 1 
				results_missense_genome[kk,"Burden(1,25)-Disruptive"] <- 1
				results_missense_genome[kk,"Burden(1,1)-Disruptive"] <- 1

				apc_num <- (length(results_m)-10)/2
				p_seq <- c(1:apc_num,1:apc_num+(apc_num+1))
				
				## calculate STAAR-B
				pvalues_sub <- as.numeric(results_m[6:length(results_m)][p_seq])
				
				if(sum(is.na(pvalues_sub))>0)
				{
					if(sum(is.na(pvalues_sub))==length(pvalues_sub))
					{
						results_m["STAAR-B"] <- 1
					}else
					{
						## not all NAs
						pvalues_sub <- pvalues_sub[!is.na(pvalues_sub)]
						if(sum(pvalues_sub[pvalues_sub<1])>0)
						{
							## not all ones
							results_m["STAAR-B"] <- CCT(pvalues_sub[pvalues_sub<1])

						}else
						{
							results_m["STAAR-B"] <- 1

						}
					}
				}else
				{
					if(sum(pvalues_sub[pvalues_sub<1])>0)
					{
						results_m["STAAR-B"] <- CCT(pvalues_sub[pvalues_sub<1])
					}else
					{
						results_m["STAAR-B"] <- 1
					}
				}
				
				results_missense_genome[kk,"STAAR-B"] <- results_m["STAAR-B"]
				
				## calculate STAAR-B(1,25)
				pvalues_sub <- as.numeric(results_m[6:length(results_m)][c(1:apc_num)])
				if(sum(is.na(pvalues_sub))>0)
				{
					if(sum(is.na(pvalues_sub))==length(pvalues_sub))
					{
						results_m["STAAR-B(1,25)"] <- 1
					}else
					{
						## not all NAs
						pvalues_sub <- pvalues_sub[!is.na(pvalues_sub)]
						if(sum(pvalues_sub[pvalues_sub<1])>0)
						{
							## not all ones
							results_m["STAAR-B(1,25)"] <- CCT(pvalues_sub[pvalues_sub<1])

						}else
						{
							results_m["STAAR-B(1,25)"] <- 1

						}
					}
				}else
				{
					if(sum(pvalues_sub[pvalues_sub<1])>0)
					{
						results_m["STAAR-B(1,25)"] <- CCT(pvalues_sub[pvalues_sub<1])
					}else
					{
						results_m["STAAR-B(1,25)"] <- 1
					}
				}
				
				results_missense_genome[kk,"STAAR-B(1,25)"] <- results_m["STAAR-B(1,25)"]
				
				## calculate STAAR-B(1,1)
				pvalues_sub <- as.numeric(results_m[6:length(results_m)][c(1:apc_num+(apc_num+1))])
				if(sum(is.na(pvalues_sub))>0)
				{
					if(sum(is.na(pvalues_sub))==length(pvalues_sub))
					{
						results_m["STAAR-B(1,1)"] <- 1
					}else
					{
						## not all NAs
						pvalues_sub <- pvalues_sub[!is.na(pvalues_sub)]
						if(sum(pvalues_sub[pvalues_sub<1])>0)
						{
							## not all ones
							results_m["STAAR-B(1,1)"] <- CCT(pvalues_sub[pvalues_sub<1])

						}else
						{
							results_m["STAAR-B(1,1)"] <- 1

						}
					}
				}else
				{
					if(sum(pvalues_sub[pvalues_sub<1])>0)
					{
						results_m["STAAR-B(1,1)"] <- CCT(pvalues_sub[pvalues_sub<1])
					}else
					{
						results_m["STAAR-B(1,1)"] <- 1
					}
				}
				
				results_missense_genome[kk,"STAAR-B(1,1)"] <- results_m["STAAR-B(1,1)"]
			}else
			{
				## disruptive missense cMAC < cut_off, set p-value to 1 
				results_missense_genome[kk,"Burden(1,25)-Disruptive"] <- 1
				results_missense_genome[kk,"Burden(1,1)-Disruptive"] <- 1
				results_missense_genome[kk,"SKAT(1,25)-Disruptive"] <- 1
				results_missense_genome[kk,"SKAT(1,1)-Disruptive"] <- 1			
				results_missense_genome[kk,"ACAT-V(1,25)-Disruptive"] <- 1
				results_missense_genome[kk,"ACAT-V(1,1)-Disruptive"] <- 1			
				
				apc_num <- (length(results_m)-19)/6
				
				p_seq <- c(1:apc_num,1:apc_num+(apc_num+1),1:apc_num+2*(apc_num+1),1:apc_num+3*(apc_num+1),1:apc_num+4*(apc_num+1),1:apc_num+5*(apc_num+1))

				results_m["STAAR-O"] <- CCT(as.numeric(results_m[6:length(results_m)][p_seq]))
				results_m["STAAR-S(1,25)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num)]))
				results_m["STAAR-S(1,1)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num+(apc_num+1))]))
				results_m["STAAR-B(1,25)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num+2*(apc_num+1))]))
				results_m["STAAR-B(1,1)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num+3*(apc_num+1))]))
				results_m["STAAR-A(1,25)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num+4*(apc_num+1))]))
				results_m["STAAR-A(1,1)"] <- CCT(as.numeric(results_m[6:length(results_m)][c(1:apc_num+5*(apc_num+1))]))
			}
		}
	}

	###### whole-genome results
	# plof
	save(results_plof_genome,file=paste0(output_path,"plof.Rdata"))
	# plof + disruptive missense
	save(results_plof_ds_genome,file=paste0(output_path,"plof_ds.Rdata"))
	# missense
	save(results_missense_genome,file=paste0(output_path,"missense.Rdata"))
	# disruptive missense
	save(results_disruptive_missense_genome,file=paste0(output_path,"disruptive_missense.Rdata"))
	# synonymous
	save(results_synonymous_genome,file=paste0(output_path,"synonymous.Rdata"))
	# ptv
	save(results_ptv_genome,file=paste0(output_path,"ptv.Rdata"))
	# ptv + disruptive missense
	save(results_ptv_ds_genome,file=paste0(output_path,"ptv_ds.Rdata"))

	if(use_SPA)
	{
		###### significant results
		# plof
		plof_sig <- results_plof_genome[results_plof_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(plof_sig,file=paste0(output_path,"plof_sig.csv"))

		# missense
		missense_sig <- results_missense_genome[results_missense_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(missense_sig,file=paste0(output_path,"missense_sig.csv"))

		# synonymous
		synonymous_sig <- results_synonymous_genome[results_synonymous_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(synonymous_sig,file=paste0(output_path,"synonymous_sig.csv"))

		# plof_ds
		plof_ds_sig <- results_plof_ds_genome[results_plof_ds_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(plof_ds_sig,file=paste0(output_path,"plof_ds_sig.csv"))

		# disruptive_missense
		disruptive_missense_sig <- results_disruptive_missense_genome[results_disruptive_missense_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(disruptive_missense_sig,file=paste0(output_path,"disruptive_missense_sig.csv"))

		# ptv
		ptv_sig <- results_ptv_genome[results_ptv_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(ptv_sig,file=paste0(output_path,"ptv_sig.csv"))

		# ptv_ds
		ptv_ds_sig <- results_ptv_ds_genome[results_ptv_ds_genome[,"STAAR-B"]<alpha,,drop=FALSE]
		write.csv(ptv_ds_sig,file=paste0(output_path,"ptv_ds_sig.csv"))

		# coding results
		coding_sig <- rbind(plof_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")],
		                    missense_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
		coding_sig <- rbind(coding_sig,synonymous_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
		coding_sig <- rbind(coding_sig,plof_ds_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
		coding_sig <- rbind(coding_sig,disruptive_missense_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
		coding_sig <- rbind(coding_sig,ptv_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
		coding_sig <- rbind(coding_sig,ptv_ds_sig[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])

		write.csv(coding_sig,file=paste0(output_path,"coding_sig.csv"))
	}else
	{
		# plof
		plof_sig <- results_plof_genome[results_plof_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(plof_sig,file=paste0(output_path,"plof_sig.csv"))

		# missense
		missense_sig <- results_missense_genome[results_missense_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(missense_sig,file=paste0(output_path,"missense_sig.csv"))

		# synonymous
		synonymous_sig <- results_synonymous_genome[results_synonymous_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(synonymous_sig,file=paste0(output_path,"synonymous_sig.csv"))

		# plof_ds
		plof_ds_sig <- results_plof_ds_genome[results_plof_ds_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(plof_ds_sig,file=paste0(output_path,"plof_ds_sig.csv"))

		# disruptive_missense
		disruptive_missense_sig <- results_disruptive_missense_genome[results_disruptive_missense_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(disruptive_missense_sig,file=paste0(output_path,"disruptive_missense_sig.csv"))

		# ptv
		ptv_sig <- results_ptv_genome[results_ptv_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(ptv_sig,file=paste0(output_path,"ptv_sig.csv"))

		# ptv_ds
		ptv_ds_sig <- results_ptv_ds_genome[results_ptv_ds_genome[,"STAAR-O"]<alpha,,drop=FALSE]
		write.csv(ptv_ds_sig,file=paste0(output_path,"ptv_ds_sig.csv"))

		# coding results
		coding_sig <- rbind(plof_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")],
		                    missense_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
		coding_sig <- rbind(coding_sig,synonymous_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
		coding_sig <- rbind(coding_sig,plof_ds_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
		coding_sig <- rbind(coding_sig,disruptive_missense_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
		coding_sig <- rbind(coding_sig,ptv_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
		coding_sig <- rbind(coding_sig,ptv_ds_sig[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])

		write.csv(coding_sig,file=paste0(output_path,"coding_sig.csv"))
	}

	#######################################################
	#     conditional analysis
	#######################################################

	if(length(known_loci)!=0)
	{
		if(!use_SPA)
		{
			### plof
			plof_sig_cond <- c()
			if(length(plof_sig)!=0)
			{
				if((class(plof_sig)[1]!="matrix")&(class(plof_sig)[1]!="data.frame"))
				{
					plof_sig <- matrix(plof_sig,nrow=1)
				}

				for(k in 1:dim(plof_sig)[1])
				{
					chr <- as.numeric(plof_sig[k,2])
					gene_name <- as.character(plof_sig[k,1])
					category <- as.character(plof_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					plof_sig_cond <- rbind(plof_sig_cond,res_cond)

					seqClose(genofile)
				}
			}

			write.csv(plof_sig_cond,file=paste0(output_path,"plof_sig_cond.csv"))

			### missense
			missense_sig_cond <- c()
			if(length(missense_sig)!=0)
			{
				if((class(missense_sig)[1]!="matrix")&(class(missense_sig)[1]!="data.frame"))
				{
					missense_sig <- matrix(missense_sig,nrow=1)
				}

				for(k in 1:dim(missense_sig)[1])
				{
					chr <- as.numeric(missense_sig[k,2])
					gene_name <- as.character(missense_sig[k,1])
					category <- as.character(missense_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					missense_sig_cond <- rbind(missense_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(missense_sig_cond,file=paste0(output_path,"missense_sig_cond.csv"))

			### synonymous
			synonymous_sig_cond <- c()
			if(length(synonymous_sig)!=0)
			{
				if((class(synonymous_sig)[1]!="matrix")&(class(synonymous_sig)[1]!="data.frame"))
				{
					synonymous_sig <- matrix(synonymous_sig,nrow=1)
				}

				for(k in 1:dim(synonymous_sig)[1])
				{
					chr <- as.numeric(synonymous_sig[k,2])
					gene_name <- as.character(synonymous_sig[k,1])
					category <- as.character(synonymous_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					synonymous_sig_cond <- rbind(synonymous_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(synonymous_sig_cond,file=paste0(output_path,"synonymous_sig_cond.csv"))

			### plof_ds
			plof_ds_sig_cond <- c()
			if(length(plof_ds_sig)!=0)
			{
				if((class(plof_ds_sig)[1]!="matrix")&(class(plof_ds_sig)[1]!="data.frame"))
				{
					plof_ds_sig <- matrix(plof_ds_sig,nrow=1)
				}

				for(k in 1:dim(plof_ds_sig)[1])
				{
					chr <- as.numeric(plof_ds_sig[k,2])
					gene_name <- as.character(plof_ds_sig[k,1])
					category <- as.character(plof_ds_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					plof_ds_sig_cond <- rbind(plof_ds_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(plof_ds_sig_cond,file=paste0(output_path,"plof_ds_sig_cond.csv"))

			### disruptive_missense
			disruptive_missense_sig_cond <- c()
			if(length(disruptive_missense_sig)!=0)
			{
				if((class(disruptive_missense_sig)[1]!="matrix")&(class(disruptive_missense_sig)[1]!="data.frame"))
				{
					disruptive_missense_sig <- matrix(disruptive_missense_sig,nrow=1)
				}

				for(k in 1:dim(disruptive_missense_sig)[1])
				{
					chr <- as.numeric(disruptive_missense_sig[k,2])
					gene_name <- as.character(disruptive_missense_sig[k,1])
					category <- as.character(disruptive_missense_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					disruptive_missense_sig_cond <- rbind(disruptive_missense_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(disruptive_missense_sig_cond,file=paste0(output_path,"disruptive_missense_sig_cond.csv"))

			### ptv
			ptv_sig_cond <- c()
			if(length(ptv_sig)!=0)
			{
				if((class(ptv_sig)[1]!="matrix")&(class(ptv_sig)[1]!="data.frame"))
				{
					ptv_sig <- matrix(ptv_sig,nrow=1)
				}

				for(k in 1:dim(ptv_sig)[1])
				{
					chr <- as.numeric(ptv_sig[k,2])
					gene_name <- as.character(ptv_sig[k,1])
					category <- as.character(ptv_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					ptv_sig_cond <- rbind(ptv_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(ptv_sig_cond,file=paste0(output_path,"ptv_sig_cond.csv"))

			### ptv_ds
			ptv_ds_sig_cond <- c()
			if(length(ptv_ds_sig)!=0)
			{
				if((class(ptv_ds_sig)[1]!="matrix")&(class(ptv_ds_sig)[1]!="data.frame"))
				{
					ptv_ds_sig <- matrix(ptv_ds_sig,nrow=1)
				}

				for(k in 1:dim(ptv_ds_sig)[1])
				{
					chr <- as.numeric(ptv_ds_sig[k,2])
					gene_name <- as.character(ptv_ds_sig[k,1])
					category <- as.character(ptv_ds_sig[k,3])

					gds.path <- agds_dir[chr]
					genofile <- seqOpen(gds.path)

					res_cond <- Gene_Centric_Coding_cond(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
					                                     obj_nullmodel=obj_nullmodel,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
					                                     variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
					                                     Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
					                                     Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name)

					ptv_ds_sig_cond <- rbind(ptv_ds_sig_cond,res_cond)

					seqClose(genofile)
				}
			}
			write.csv(ptv_ds_sig_cond,file=paste0(output_path,"ptv_ds_sig_cond.csv"))

			## coding cond
			coding_sig_cond <- rbind(plof_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")],
			                         missense_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
			coding_sig_cond <- rbind(coding_sig_cond,synonymous_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
			coding_sig_cond <- rbind(coding_sig_cond,plof_ds_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
			coding_sig_cond <- rbind(coding_sig_cond,disruptive_missense_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
			coding_sig_cond <- rbind(coding_sig_cond,ptv_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])
			coding_sig_cond <- rbind(coding_sig_cond,ptv_ds_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","SKAT(1,25)","Burden(1,1)","ACAT-V(1,25)","STAAR-O")])

			write.csv(coding_sig_cond,file=paste0(output_path,"coding_sig_cond.csv"))
		}else
		{
			### synonymous
			synonymous_sig_cond <- c()
			if(length(synonymous_sig)!=0)
			{
				if((class(synonymous_sig)[1]!="matrix")&(class(synonymous_sig)[1]!="data.frame"))
				{
					synonymous_sig <- matrix(synonymous_sig,nrow=1)
				}

				for(k in 1:dim(synonymous_sig)[1])
				{
					chr <- as.numeric(synonymous_sig[k,2])
					gene_name <- as.character(synonymous_sig[k,1])
					category <- as.character(synonymous_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- synonymous_sig[k,,drop=FALSE]
						res_cond[1,3] <- "synonymous_cond"
					}

					synonymous_sig_cond <- rbind(synonymous_sig_cond,res_cond)
				}
			}
			write.csv(synonymous_sig_cond,file=paste0(output_path,"synonymous_sig_cond.csv"))

			### plof
			plof_sig_cond <- c()
			if(length(plof_sig)!=0)
			{
				if((class(plof_sig)[1]!="matrix")&(class(plof_sig)[1]!="data.frame"))
				{
					plof_sig <- matrix(plof_sig,nrow=1)
				}

				for(k in 1:dim(plof_sig)[1])
				{
					chr <- as.numeric(plof_sig[k,2])
					gene_name <- as.character(plof_sig[k,1])
					category <- as.character(plof_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- plof_sig[k,,drop=FALSE]
						res_cond[1,3] <- "plof_cond"
					}

					plof_sig_cond <- rbind(plof_sig_cond,res_cond)
				}
			}
			write.csv(plof_sig_cond,file=paste0(output_path,"plof_sig_cond.csv"))

			### plof_ds
			plof_ds_sig_cond <- c()
			if(length(plof_ds_sig)!=0)
			{
				if((class(plof_ds_sig)[1]!="matrix")&(class(plof_ds_sig)[1]!="data.frame"))
				{
					plof_ds_sig <- matrix(plof_ds_sig,nrow=1)
				}

				for(k in 1:dim(plof_ds_sig)[1])
				{
					chr <- as.numeric(plof_ds_sig[k,2])
					gene_name <- as.character(plof_ds_sig[k,1])
					category <- as.character(plof_ds_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- plof_ds_sig[k,,drop=FALSE]
						res_cond[1,3] <- "plof_ds_cond"
					}

					plof_ds_sig_cond <- rbind(plof_ds_sig_cond,res_cond)
				}
			}
			write.csv(plof_ds_sig_cond,file=paste0(output_path,"plof_ds_sig_cond.csv"))

			### missense
			missense_sig_cond <- c()
			if(length(missense_sig)!=0)
			{
				if((class(missense_sig)[1]!="matrix")&(class(missense_sig)[1]!="data.frame"))
				{
					missense_sig <- matrix(missense_sig,nrow=1)
				}

				for(k in 1:dim(missense_sig)[1])
				{
					chr <- as.numeric(missense_sig[k,2])
					gene_name <- as.character(missense_sig[k,1])
					category <- as.character(missense_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- missense_sig[k,,drop=FALSE]
						res_cond[1,3] <- "missense_cond"
					}

					missense_sig_cond <- rbind(missense_sig_cond,res_cond)
				}
			}
			write.csv(missense_sig_cond,file=paste0(output_path,"missense_sig_cond.csv"))

			### disruptive_missense
			disruptive_missense_sig_cond <- c()
			if(length(disruptive_missense_sig)!=0)
			{
				if((class(disruptive_missense_sig)[1]!="matrix")&(class(disruptive_missense_sig)[1]!="data.frame"))
				{
					disruptive_missense_sig <- matrix(disruptive_missense_sig,nrow=1)
				}

				for(k in 1:dim(disruptive_missense_sig)[1])
				{
					chr <- as.numeric(disruptive_missense_sig[k,2])
					gene_name <- as.character(disruptive_missense_sig[k,1])
					category <- as.character(disruptive_missense_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- disruptive_missense_sig[k,,drop=FALSE]
						res_cond[1,3] <- "disruptive_missense_cond"
					}

					disruptive_missense_sig_cond <- rbind(disruptive_missense_sig_cond,res_cond)
				}
			}
			write.csv(disruptive_missense_sig_cond,file=paste0(output_path,"disruptive_missense_sig_cond.csv"))

			### ptv
			ptv_sig_cond <- c()
			if(length(ptv_sig)!=0)
			{
				if((class(ptv_sig)[1]!="matrix")&(class(ptv_sig)[1]!="data.frame"))
				{
					ptv_sig <- matrix(ptv_sig,nrow=1)
				}

				for(k in 1:dim(ptv_sig)[1])
				{
					chr <- as.numeric(ptv_sig[k,2])
					gene_name <- as.character(ptv_sig[k,1])
					category <- as.character(ptv_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- ptv_sig[k,,drop=FALSE]
						res_cond[1,3] <- "ptv_cond"
					}

					ptv_sig_cond <- rbind(ptv_sig_cond,res_cond)
				}
			}
			write.csv(ptv_sig_cond,file=paste0(output_path,"ptv_sig_cond.csv"))

			### ptv_ds
			ptv_ds_sig_cond <- c()
			if(length(ptv_ds_sig)!=0)
			{
				if((class(ptv_ds_sig)[1]!="matrix")&(class(ptv_ds_sig)[1]!="data.frame"))
				{
					ptv_ds_sig <- matrix(ptv_ds_sig,nrow=1)
				}

				for(k in 1:dim(ptv_ds_sig)[1])
				{
					chr <- as.numeric(ptv_ds_sig[k,2])
					gene_name <- as.character(ptv_ds_sig[k,1])
					category <- as.character(ptv_ds_sig[k,3])

					if(file.exists(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))
					{
						gds.path <- agds_dir[chr]
						genofile <- seqOpen(gds.path)

						obj_nullmodel_cond <- get(load(paste0(cond_null_model_dir,cond_null_model_name,".chr",chr,".Rdata")))

						res_cond <- Gene_Centric_Coding_cond_spa(chr=chr,gene_name=gene_name,category=category,genofile=genofile,
						                                         obj_nullmodel=obj_nullmodel_cond,known_loci=known_loci,rare_maf_cutoff=rare_maf_cutoff,
						                                         variant_type=variant_type,geno_missing_imputation=geno_missing_imputation,QC_label=QC_label,
						                                         Annotation_dir=Annotation_dir,Annotation_name_catalog=Annotation_name_catalog,
						                                         Use_annotation_weights=Use_annotation_weights,Annotation_name=Annotation_name,
						                                         SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff)
						seqClose(genofile)
					}else
					{
						res_cond <- ptv_ds_sig[k,,drop=FALSE]
						res_cond[1,3] <- "ptv_ds_cond"
					}

					ptv_ds_sig_cond <- rbind(ptv_ds_sig_cond,res_cond)
				}
			}
			write.csv(ptv_ds_sig_cond,file=paste0(output_path,"ptv_ds_sig_cond.csv"))

			# coding results
			coding_sig_cond <- rbind(plof_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")],
			                         missense_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
			coding_sig_cond <- rbind(coding_sig_cond,synonymous_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
			coding_sig_cond <- rbind(coding_sig_cond,plof_ds_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
			coding_sig_cond <- rbind(coding_sig_cond,disruptive_missense_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
			coding_sig_cond <- rbind(coding_sig_cond,ptv_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])
			coding_sig_cond <- rbind(coding_sig_cond,ptv_ds_sig_cond[,c("Gene name","Chr","Category","#SNV","cMAC","Burden(1,1)","STAAR-B")])

			write.csv(coding_sig_cond,file=paste0(output_path,"coding_sig_cond.csv"))
		}
	}

	## manhattan plot
	if(manhattan_plot)
	{
		### plof
		results_STAAR <- results_plof_genome[,c(1,2,dim(results_plof_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))

		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "plof"

		### plof_ds
		results_STAAR <- results_plof_ds_genome[,c(1,2,dim(results_plof_ds_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "plof_ds"

		### missense
		if(!use_SPA)
		{
			results_STAAR <- results_missense_genome[,c(1,2,dim(results_missense_genome)[2]-6)]
		}else
		{
			results_STAAR <- results_missense_genome[,c(1,2,dim(results_missense_genome)[2]-2)]
		}

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "missense"

		### disruptive_missense
		results_STAAR <- results_disruptive_missense_genome[,c(1,2,dim(results_disruptive_missense_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "disruptive_missense"

		### synonymous
		results_STAAR <- results_synonymous_genome[,c(1,2,dim(results_synonymous_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "synonymous"

		### ptv
		results_STAAR <- results_ptv_genome[,c(1,2,dim(results_ptv_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "ptv"

		### ptv_ds
		results_STAAR <- results_ptv_ds_genome[,c(1,2,dim(results_ptv_ds_genome)[2])]

		results_m <- c()
		for(i in 1:dim(results_STAAR)[2])
		{
			results_m <- cbind(results_m,unlist(results_STAAR[,i]))
		}

		colnames(results_m) <- colnames(results_STAAR)
		results_m <- data.frame(results_m,stringsAsFactors = FALSE)
		results_m[,2] <- as.numeric(results_m[,2])
		results_m[,3] <- as.numeric(results_m[,3])

		genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
		genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
		colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "ptv_ds"


		## ylim
		coding_minp <- min(genes_info_manhattan[,(dim(genes_info_manhattan)[2]-4):dim(genes_info_manhattan)[2]])
		min_y <- ceiling(-log10(coding_minp)) + 1

		pch <- c(0,1,2,3,4,5,6)
		figure1 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$plof,sig.level=alpha,pch=pch[1],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure2 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$plof_ds,sig.level=alpha,pch=pch[2],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure3 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$missense,sig.level=alpha,pch=pch[3],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure4 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$disruptive_missense,sig.level=alpha,pch=pch[4],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure5 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$synonymous,sig.level=alpha,pch=pch[5],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure6 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$ptv,sig.level=alpha,pch=pch[6],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))

		figure7 <- manhattan_plot(genes_info_manhattan[,2], (genes_info_manhattan[,3]+genes_info_manhattan[,4])/2, genes_info_manhattan$ptv_ds,sig.level=alpha,pch=pch[7],col = c("blue4", "orange3"),ylim=c(0,min_y),
		                          auto.key=T,key=list(space="top", columns=5, title="Functional Category", cex.title=1, points=TRUE,pch=pch,text=list(c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"))))



		print("Manhattan plot")

		png(paste0(output_path,"gene_centric_coding_manhattan.png"), width = 9, height = 6, units = 'in', res = 600)

		print(figure1)
		print(figure2,newpage = FALSE)
		print(figure3,newpage = FALSE)
		print(figure4,newpage = FALSE)
		print(figure5,newpage = FALSE)
		print(figure6,newpage = FALSE)
		print(figure7,newpage = FALSE)

		dev.off()
	}

	## Q-Q plot
	if(QQ_plot)
	{
		if(!manhattan_plot)
		{
			### plof
			results_STAAR <- results_plof_genome[,c(1,2,dim(results_plof_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))

			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "plof"

			### plof_ds
			results_STAAR <- results_plof_ds_genome[,c(1,2,dim(results_plof_ds_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "plof_ds"

			### missense
			if(!use_SPA)
			{
				results_STAAR <- results_missense_genome[,c(1,2,dim(results_missense_genome)[2]-6)]
			}else
			{
				results_STAAR <- results_missense_genome[,c(1,2,dim(results_missense_genome)[2]-2)]
			}

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "missense"

			### disruptive_missense
			results_STAAR <- results_disruptive_missense_genome[,c(1,2,dim(results_disruptive_missense_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "disruptive_missense"

			### synonymous
			results_STAAR <- results_synonymous_genome[,c(1,2,dim(results_synonymous_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "synonymous"

			### ptv
			results_STAAR <- results_ptv_genome[,c(1,2,dim(results_ptv_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "ptv"

			### ptv_ds
			results_STAAR <- results_ptv_ds_genome[,c(1,2,dim(results_ptv_ds_genome)[2])]

			results_m <- c()
			for(i in 1:dim(results_STAAR)[2])
			{
				results_m <- cbind(results_m,unlist(results_STAAR[,i]))
			}

			colnames(results_m) <- colnames(results_STAAR)
			results_m <- data.frame(results_m,stringsAsFactors = FALSE)
			results_m[,2] <- as.numeric(results_m[,2])
			results_m[,3] <- as.numeric(results_m[,3])

			genes_info_manhattan <- dplyr::left_join(genes_info_manhattan,results_m,by=c("chromosome_name"="Chr","hgnc_symbol"="Gene.name"))
			genes_info_manhattan[is.na(genes_info_manhattan)] <- 1
			colnames(genes_info_manhattan)[dim(genes_info_manhattan)[2]] <- "ptv_ds"


			## ylim
			coding_minp <- min(genes_info_manhattan[,(dim(genes_info_manhattan)[2]-4):dim(genes_info_manhattan)[2]])
			min_y <- ceiling(-log10(coding_minp)) + 1
		}

		print("Q-Q plot")
		cex_point <- 1

		png(paste0(output_path,"gene_centric_coding_qqplot.png"), width = 8, height = 8, units = 'in', res = 600)

		### plof
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$plof[genes_info_manhattan$plof < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=0, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### plof_ds
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$plof_ds[genes_info_manhattan$plof_ds < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=1, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### missense
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$missense[genes_info_manhattan$missense < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=2, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### disruptive_missense
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$disruptive_missense[genes_info_manhattan$disruptive_missense < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=3, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### synonymous
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$synonymous[genes_info_manhattan$synonymous < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=4, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### ptv
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$ptv[genes_info_manhattan$ptv < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=5, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		### ptv_ds
		## remove unconverged p-values
		observed <- sort(genes_info_manhattan$ptv_ds[genes_info_manhattan$ptv_ds < 1])

		lobs <- -(log10(observed))

		expected <- c(1:length(observed))
		lexp <- -(log10(expected / (length(expected)+1)))

		par(new=T)
		par(mar=c(5,6,4,4))
		plot(lexp,lobs,pch=6, cex=cex_point, xlim = c(0, 5), ylim = c(0, min_y),
		     xlab = expression(Expected ~ ~-log[10](italic(p))), ylab = expression(Observed ~ ~-log[10](italic(p))),
		     font.lab=2,cex.lab=2,cex.axis=2,font.axis=2)

		abline(0, 1, col="red",lwd=2)

		legend("topleft",legend=c("pLoF","pLoF+D","Missense","Disruptive Missense","Synonymous","PTV","PTV+D"),ncol=1,bty="o",box.lwd=1,pch=0:6,cex=1.5,text.font=2)

		dev.off()
	}

}
xihaoli/STAARpipelineSummary documentation built on Oct. 20, 2024, 9:35 p.m.