#### now here x can be matrix, data.frame, or kernel matrix, here we can use the kernel version of discriminant, these function also correct the existing function at R CRAN
LDAKPC <- function(x,y, n.pc,usekernel = FALSE, fL = 0,kernel.name = "rbfdot", kpar=list(0.001), kernel="gaussian",threshold = 1e-5,...){
LDAKPC <- list()
class(LDAKPC) <- "Linear Discriminant Analysis of Kernel principle components"
# kpca
##require("kernlab")
LDAKPC.train <- kernlab::kpca(~.,data=x,kernel = kernel.name,
kpar = kpar,
th = threshold,...)
if (is.null(n.pc)){
LDAKPC.rotation.train <- as.data.frame(LDAKPC.train@rotated)
} else {
LDAKPC.rotation.train <- as.data.frame(LDAKPC.train@rotated[,1:n.pc])}
# KPC + lda
lda.rotation.train <- MASS::lda(LDAKPC.rotation.train,y,CV=FALSE,...)
LDs <- as.matrix(LDAKPC.rotation.train) %*% as.matrix(lda.rotation.train$scaling)
labels <- as.factor(y)
LDAKPC$kpca<- LDAKPC.train
LDAKPC$kpc=LDAKPC.rotation.train
LDAKPC$LDAKPC<- lda.rotation.train
LDAKPC$LDs <- LDs
LDAKPC$label <- labels
LDAKPC$n.pc=n.pc
return(LDAKPC)
}
### once predict, r or n.pc should be the same with the input data, or the transformation will not work
#' @export
predict.LDAKPC <- function(object,prior=NULL, testData,...){
n.pc=object$n.pc
# kpca
if(is.null(prior)==TRUE){
prior=object$LDAKPC$prior
}
##requireNamespace(kernlab)
predict.kpca <- kernlab::predict(object = object$kpca,
testData)[,1:n.pc]
# kpca + lfda = lfdakpc
predicted_LDs <- predict.kpca %*% as.matrix(object$LDAKPC$scaling)
# requireNamespace("stats")
predict.lda <- function(object, newdata, prior = object$prior, dimen,
method = c("plug-in", "predictive", "debiased"), ...)
{
if(!inherits(object, "lda")) stop("object not of class \"lda\"")
if(!is.null(Terms <- object$terms)) { # formula fit
Terms <- delete.response(Terms)
if(missing(newdata)) newdata <- model.frame(object)
else {
newdata <- model.frame(Terms, newdata, na.action=na.pass,
xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, newdata)
}
x <- model.matrix(Terms, newdata, contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(x), nomatch = 0L)
if(xint > 0L) x <- x[, -xint, drop = FALSE]
} else { # matrix or data-frame fit
if(missing(newdata)) {
if(!is.null(sub <- object$call$subset))
newdata <-
eval.parent(parse(text = paste(deparse(object$call$x,
backtick = TRUE),
"[", deparse(sub, backtick = TRUE),",]")))
else newdata <- eval.parent(object$call$x)
if(!is.null(nas <- object$call$na.action))
newdata <- eval(call(nas, newdata))
}
if(is.null(dim(newdata)))
dim(newdata) <- c(1L, length(newdata)) # a row vector
x <- as.matrix(newdata) # to cope with dataframes
}
if(ncol(x) != ncol(object$means)) stop("wrong number of variables")
if(length(colnames(x)) > 0L &&
any(colnames(x) != dimnames(object$means)[[2L]]))
warning("variable names in 'newdata' do not match those in 'object'")
ng <- length(object$prior)
if(!missing(prior)) {
if(any(prior < 0) || round(sum(prior), 5) != 1) stop("invalid 'prior'")
if(length(prior) != ng) stop("'prior' is of incorrect length")
}
## remove overall means to keep distances small
means <- colSums(prior*object$means)
scaling <- object$scaling
x <- scale(x, center = means, scale = FALSE) %*% scaling
dm <- scale(object$means, center = means, scale = FALSE) %*% scaling
method <- match.arg(method)
dimen <- if(missing(dimen)) length(object$svd) else min(dimen, length(object$svd))
N <- object$N
if(method == "plug-in") {
dm <- dm[, 1L:dimen, drop = FALSE]
dist <- matrix(0.5 * rowSums(dm^2) - log(prior), nrow(x),
length(prior), byrow = TRUE) - x[, 1L:dimen, drop=FALSE] %*% t(dm)
dist <- exp( -(dist - apply(dist, 1L, min, na.rm=TRUE)))
} else if (method == "debiased") {
dm <- dm[, 1L:dimen, drop=FALSE]
dist <- matrix(0.5 * rowSums(dm^2), nrow(x), ng, byrow = TRUE) -
x[, 1L:dimen, drop=FALSE] %*% t(dm)
dist <- (N - ng - dimen - 1)/(N - ng) * dist -
matrix(log(prior) - dimen/object$counts , nrow(x), ng, byrow=TRUE)
dist <- exp( -(dist - apply(dist, 1L, min, na.rm=TRUE)))
} else { # predictive
dist <- matrix(0, nrow = nrow(x), ncol = ng)
p <- ncol(object$means)
# adjust to ML estimates of covariances
X <- x * sqrt(N/(N-ng))
for(i in 1L:ng) {
nk <- object$counts[i]
dev <- scale(X, center = dm[i, ], scale = FALSE)
dev <- 1 + rowSums(dev^2) * nk/(N*(nk+1))
dist[, i] <- prior[i] * (nk/(nk+1))^(p/2) * dev^(-(N - ng + 1)/2)
}
}
posterior <- dist / drop(dist %*% rep(1, ng))
nm <- names(object$prior)
cl <- factor(nm[max.col(posterior)], levels = object$lev)
dimnames(posterior) <- list(rownames(x), nm)
list(class = cl, posterior = posterior, x = x[, 1L:dimen, drop = FALSE])
}
predict.LDAKPC <- predict.lda(object$LDAKPC,prior,
newdata = predict.kpca)
return(list(predicted_LDs=predicted_LDs,predict.LDAKPC=predict.LDAKPC))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.