Description Usage Arguments Value References Examples
Use gene set variation analysis to calculate enrichment score of each sample in each subtype based on given gene set list of interest.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | runGSVA(
moic.res = NULL,
norm.expr = NULL,
gset.gmt.path = NULL,
gsva.method = "gsva",
centerFlag = TRUE,
scaleFlag = TRUE,
halfwidth = 1,
annCol = NULL,
annColors = NULL,
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627",
"#023E8A", "#9D4EDD"),
distance = "euclidean",
linkage = "ward.D",
show_rownames = TRUE,
show_colnames = FALSE,
color = c("#366A9B", "#4E98DE", "#DDDDDD", "#FBCFA7", "#F79C4A"),
fig.path = getwd(),
fig.name = NULL,
width = 8,
height = 8,
...
)
|
moic.res |
An object returned by 'getMOIC()' with one specified algorithm or 'get%algorithm_name%' or 'getConsensusMOIC()' with a list of multiple algorithms. |
norm.expr |
A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended. |
gset.gmt.path |
A string value to indicate ABSOULUTE PATH/NAME of gene sets of interest stored as GMT format https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29. |
centerFlag |
A logical vector to indicate if enrichment scores should be centered; TRUE by default. |
scaleFlag |
A logical vector to indicate if enrichment scores should be scaled; TRUE by default. |
halfwidth |
A numeric value to assign marginal cutoff for truncating enrichment scores; 1 by default. |
annCol |
A data.frame storing annotation information for samples. |
annColors |
A list of string vectors for colors matched with annCol. |
clust.col |
A string vector storing colors for annotating each subtype at the top of heatmap. |
distance |
A string value of distance measurement for hierarchical clustering; 'euclidean' by default. |
linkage |
A string value of clustering method for hierarchical clustering; 'ward.D' by default. |
show_rownames |
A logic value to indicate if showing rownames (feature names) in heatmap; TRUE by default. |
show_colnames |
A logic value to indicate if showing colnames (sample ID) in heatmap; FALSE by default. |
color |
A string vector storing colors for heatmap. |
fig.path |
A string value to indicate the output path for storing the enrichment heatmap. |
fig.name |
A string value to indicate the name of the enrichment heatmap. |
width |
A numeric value to indicate the width of output figure. |
height |
A numeric value to indicate the height of output figure. |
... |
Additional parameters pass to pheatmap. |
A figure of enrichment heatmap (.pdf) and a list with the following components:
gset.list
a list storing gene sets information converted from GMT format by read.gmt.
raw.es
a data.frame storing raw enrichment score based on given gene sets of interest by using specified gsva.method
.
scaled.es
a data.frame storing z-scored enrichment score based on given gene sets of interest by using specified gsva.method
.
Barbie, D.A. et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112.
Hänzelmann, S., Castelo, R. and Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14(1):7.
Lee, E. et al. (2008). Inferring pathway activity toward precise disease classification. PLoS Comp Biol, 4(11):e1000217.
Tomfohr, J. et al. (2005). Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics, 6(1):1-11.
Yu G, Wang L, Han Y, He Q (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16(5):284-287.
1 | # There is no example and please refer to vignette.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.