Description Usage Arguments Value References Examples
This function aims to identify uniquely and significantly expressed (overexpressed or downexpressed) biomarkers for each subtype identified by multi-omics integrative clustering algorithms. Top markers will be chosen to generate a template so as to run nearest template prediction for subtype verification.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | runMarker(
moic.res = NULL,
dea.method = c("deseq2", "edger", "limma"),
prefix = NULL,
dat.path = getwd(),
res.path = getwd(),
p.cutoff = 0.05,
p.adj.cutoff = 0.05,
dirct = "up",
n.marker = 200,
doplot = TRUE,
norm.expr = NULL,
annCol = NULL,
annColors = NULL,
clust.col = c("#2EC4B6", "#E71D36", "#FF9F1C", "#BDD5EA", "#FFA5AB", "#011627",
"#023E8A", "#9D4EDD"),
halfwidth = 3,
centerFlag = TRUE,
scaleFlag = TRUE,
show_rownames = FALSE,
show_colnames = FALSE,
color = c("#5bc0eb", "black", "#ECE700"),
fig.path = getwd(),
fig.name = NULL,
width = 8,
height = 8,
...
)
|
moic.res |
An object returned by 'getMOIC()' with one specified algorithm or 'get%algorithm_name%' or 'getConsensusMOIC()' with a list of multiple algorithms. |
dea.method |
A string value to indicate the algorithm for differential expression analysis. Allowed value contains c('deseq2', 'edger', 'limma'). |
prefix |
A string value to indicate the prefix of differential expression file (use for searching files). |
dat.path |
A string value to indicate the path for saving the files of differential expression analysis. |
res.path |
A string value to indicate the path for saving the results for identifying subtype-specific markers. |
p.cutoff |
A numeric value to indicate the nominal p value for identifying significant markers; pvalue < 0.05 by default. |
p.adj.cutoff |
A numeric value to indicate the adjusted p value for identifying significant markers; padj < 0.05 by default. |
dirct |
A string value to indicate the direction of identifying significant marker. Allowed values contain c('up', 'down'); 'up' means up-regulated marker, and 'down' means down-regulated marker. |
n.marker |
A integer value to indicate how many top markers sorted by log2fc should be identified for each subtype; 200 by default. |
doplot |
A logic value to indicate if generating heatmap by using subtype-specific markers. TRUE by default. |
norm.expr |
A matrix of normalized expression data with rows for genes and columns for samples; FPKM or TPM without log2 transformation is recommended. |
annCol |
A data.frame storing annotation information for samples. |
annColors |
A list of string vectors for colors matched with annCol. |
clust.col |
A string vector storing colors for annotating each subtype at the top of heatmap. |
halfwidth |
A numeric vector to assign marginal cutoff for truncating values in data; 3 by default. |
centerFlag |
A logical vector to indicate if expression data should be centered; TRUE by default. |
scaleFlag |
A logical vector to indicate if expression data should be scaled; TRUE by default. |
show_rownames |
A logic value to indicate if showing rownames (feature names) in heatmap; FALSE by default. |
show_colnames |
A logic value to indicate if showing colnames (sample ID) in heatmap; FALSE by default. |
color |
A string vector storing colors for heatmap. |
fig.path |
A string value to indicate the output path for storing the marker heatmap. |
fig.name |
A string value to indicate the name of the marker heatmap. |
width |
A numeric value to indicate the width of output figure. |
height |
A numeric value to indicate the height of output figure. |
... |
Additional parameters pass to pheatmap. |
A figure of subtype-specific marker heatmap (.pdf) if doPlot = TRUE
and a list with the following components:
unqlist
a string vector storing the unique marker across all subtypes.
templates
a data.frame storing the the template information for nearest template prediction, which is used for verification in external cohort.
dirct
a string value indicating the direction for identifying subtype-specific markers.
heatmap
a complexheatmap object.
Gu Z, Eils R, Schlesner M (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32(18):2847-2849.
1 | # There is no example and please refer to vignette.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.