plot.fosr.vs: Plot for Function-on Scalar Regression with variable...

Description Usage Arguments Value Author(s) See Also Examples

View source: R/plot.fosr.vs.R

Description

Given a "fosr.vs" object, produces a figure of estimated coefficient functions.

Usage

1
2
## S3 method for class 'fosr.vs'
plot.fosr.vs(object, ...)

Arguments

object

an object of class "fosr.vs".

...

additional arguments.

Value

a figure of estimated coefficient functions.

Author(s)

Yakuan Chen [email protected]

See Also

fosr.vs

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)

yakuan-chen/fosr.vs documentation built on May 28, 2017, 8:34 a.m.