#' gets beta prior paramenters
#'
#' gets beta prior paramenters and plots distribution
#' @param mu mean of beta distribution
#' @param CV cv of beta distribution
#' @param Min min of x-axis range (default = 0)
#' @param Prior X-axis label
#' @param Plot c(TRUE,FALSE)
#' @return a and b parameter (shape and scale)
#' @export
get_beta <- function(mu,CV,Min=0,Prior="x",Plot=FALSE){
a = seq(0.0001,1000,0.001)
b= (a-mu*a)/mu
s2 = a*b/((a+b)^2*(a+b+1))
sdev = sqrt(s2)
# find beta )parameter a
CV.check = (sdev/mu-CV)^2
a = a[CV.check==min(CV.check)]
#find beta parameter b
b = (a-mu*a)/mu
x = seq(Min,1,0.001)
pdf = dbeta(x,a,b)
if(Plot==TRUE){
plot(x,pdf,type="l",xlim=range(x[pdf>0.01]),xlab=paste(Prior),ylab="",yaxt="n")
polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),col="grey")
}
return(c(a,b))
}
#' gets gamma prior paramenters
#'
#' gets gamma prior paramenters and plots distribution
#' @param mu mean of gamma distribution
#' @param CV cv of gamma distribution
#' @param Prior X-axis label
#' @param Plot c(TRUE,FALSE)
#' @return a and b parameter (shape and scale)
#' @export
get_gamma <- function(mu,CV,Prior="x", Plot=FALSE){
a = seq(0.00001,10000,0.0001)
b = a/mu
s2 = (a/b^2)
sdev = sqrt(s2)
# find beta )parameter a
CV.check = (sdev/mu-CV)^2
a = a[CV.check==min(CV.check)]
#find beta parameter b
b = a/mu
x = sort(rgamma(1000,a,b))
pdf = dgamma(x,a,b)
if(Plot==TRUE){
plot(x,pdf,type="l",xlim=range(x[pdf>0.01]),xlab=paste(Prior),ylab="",yaxt="n")
polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),col="grey")
}
return(c(a,b))
}
#' gets lognormal prior paramenters
#'
#' gets lognormal prior paramenters mean and log.sd with bias correction and plots distribution
#' @param mu mean of lognormal distribution
#' @param CV cv of lognoram distribution
#' @param Prior X-axis label
#' @param Plot c(TRUE,FALSE)
#' @return mean and lod.sd
#' @export
plot_lnorm <- function(mu,CV,Prior="x",Plot=FALSE){
sdev= sqrt(log(CV^2+1))
rand.pr = rlnorm(1000,log(mu)-0.5*sdev^2,sdev)
x = seq(min(rand.pr),quantile(rand.pr,0.995),max(rand.pr/500))
pdf = dlnorm(x,log(mu),sdev)
if(Plot==TRUE){
plot(x,pdf,type="l",xlim=range(x),xlab=paste(Prior),ylab="",yaxt="n")
polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),col="grey")
}
return(c(mu,sdev))
}
#' Gets lognormal prior paramenters
#'
#' Gets lognormal prior paramenters mean and log.sd with bias correction and plots distribution
#' @param mu mean of lognormal distribution
#' @param CV cv of lognoram distribution
#' @param Prior X-axis label
#' @param Plot c(TRUE,FALSE)
#' @return mean and lod.sd
#' @export
plot_lnorm <- function(mu,CV,Prior="x",Plot=FALSE){
sdev= sqrt(log(CV^2+1))
rand.pr = rlnorm(1000,log(mu)-0.5*sdev^2,sdev)
x = seq(min(rand.pr),quantile(rand.pr,0.995),max(rand.pr/500))
pdf = dlnorm(x,log(mu),sdev)
if(Plot==TRUE){
plot(x,pdf,type="l",xlim=range(x),xlab=paste(Prior),ylab="",yaxt="n")
polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),col="grey")
}
return(c(mu,sdev))
}
#' Function kobeJabba for FLR
#'
#' Function to convert kobe posteriors into KOBE FLR input object
#' @param x posterior array dims(iter,year,stock,harvest)
#' @export
kobeJabba<-function(x){
out=cbind(reshape::melt(x[,,2]),c(x[,,3]))
names(out)=c("iter","year","stock","harvest")
out$year=out$year
out}
#' Function to convert JABBA projections into FLR object
#'
#' Function to convert kobe projection matrix posteriors into Kobe FLR input object
#' @param x posterior array dims(iter,year,tac,stock,harvest)
#' @export
kobeJabbaProj<-function(x){
out=cbind(reshape::melt(x[,,,2]),c(x[,,,3]))
names(out)=c("iter","year","tac","stock","harvest")
out$year=out$year
out}
#' Function to do runs.test and 3 x sigma limits
#'
#' runs test is conducted with library(snpar)
#' @param x residuals from CPUE fits
#' @param type only c("resid","observations")
#' @return runs p value and 3 x sigma limits
#' @export
runs_sig3 <- function(x,type=NULL) {
if(is.null(type)) type="resid"
if(type=="resid"){mu = 0}else{mu = mean(x, na.rm = TRUE)}
# Average moving range
mr <- abs(diff(x - mu))
amr <- mean(mr, na.rm = TRUE)
# Upper limit for moving ranges
ulmr <- 3.267 * amr
# Remove moving ranges greater than ulmr and recalculate amr, Nelson 1982
mr <- mr[mr < ulmr]
amr <- mean(mr, na.rm = TRUE)
# Calculate standard deviation, Montgomery, 6.33
stdev <- amr / 1.128
# Calculate control limits
lcl <- mu - 3 * stdev
ucl <- mu + 3 * stdev
if(nlevels(factor(sign(x)))>1){
runstest = snpar::runs.test(x)
pvalue = round(runstest$p.value,3)} else {
pvalue = 0.001
}
return(list(sig3lim=c(lcl,ucl),p.runs= pvalue))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.