#' Title batchMS2Score
#'
#' @param ms1Info the result of extracResFliter
#' @param ms1DeltaMZ the difference of m/z between ms1Info and mgf files
#' @param ms2DeltaMZ the difference of m/z between mgf and database of MS2
#' @param deltaTR the difference of retention time between ms1Info and mgf
#' @param mgfMatrix the mgf mateix that created by importMgf
#' @param mgfData the mgf data that created by inportMgf
#' @param MS2.sn.threshold The S/N threshold of MS2.
#' @param MS2.noise.intensity The intensity of noise of MS2 spectrum.
#' @param MS2.missing.value.padding The MS2 missing value padding method, "half" or "minimal.value"
#' @param ms2Mode MS2 acquisition mode, there are two selection for this parameter, 'ida' and 'dia'
#' @param scoreMode MS2 score mode, 'obverse','reverse' and 'average'
#' @param diaMethod if the MS2 acquisition mode is dia, a diaMethod is necessary. If is ida, diaMethod can be set as "NA"
#'
#' @return ms2ScoreResult
#' @export batchMS2Score
#' @importFrom tcltk tkProgressBar setTkProgressBar
#' @importFrom utils read.table
#'
#' @examples
#' load(system.file("extdata/testData", "ms1InfoTest.rda", package = "MetEx"))
#' load(system.file("extdata/testData", "mgfMatrixTest.rda", package = "MetEx"))
#' load(system.file("extdata/testData", "mgfDataTest.rda", package = "MetEx"))
#' ms2ScoreResult <- batchMS2Score(ms1Info = ms1InfoTest,
#' ms1DeltaMZ = 0.01,
#' ms2DeltaMZ = 0.02,
#' deltaTR = 15,
#' mgfMatrix = mgfMatrixTest,
#' mgfData = mgfDataTest)
#' @references
#' Tsugawa, Hiroshi , et al. "MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis." Nature Methods 12.6(2015):523-526.
batchMS2Score <- function(ms1Info,
ms1DeltaMZ,
ms2DeltaMZ,
deltaTR,
mgfMatrix,
mgfData,
MS2.sn.threshold = 3,
MS2.noise.intensity = "minimum",
MS2.missing.value.padding = "half",
ms2Mode = 'ida',
scoreMode = 'average',
diaMethod = 'NA') {
# require("stringr")
# require("tcltk")
MSMS.Exp <- vector(mode="character",length = nrow(ms1Info))
DP <- vector(mode="character",length = nrow(ms1Info))
RDP <- vector(mode="character",length = nrow(ms1Info))
frag.ratio <- vector(mode="character",length = nrow(ms1Info))
score <- vector(mode="character",length = nrow(ms1Info))
epeaksPosiStart <- which("extractedPeaks" == names(ms1Info))
epeaksPosiEnd <- ncol(ms1Info)
pb <- tkProgressBar("batchMS2Score","Rate of progress %", 0, 100)
if (ms2Mode=='dia'){
diaMethodmatrix <- read.table(diaMethod)
}
mzinmgf <- as.matrix(mgfMatrix[ , 'pepmassNum'])
trinmgf <- as.matrix(mgfMatrix[ , 'trNum'])
for (i in c(1:nrow(ms1Info))){
info <- sprintf("Rate of progress %d%%", round(i*100/nrow(ms1Info)))
setTkProgressBar(pb, i*100/nrow(ms1Info), sprintf("batchMS2Score (%s)", info),info)
mzi <- ms1Info$'m/z'[i]
tri <- ms1Info$trOfPeak[i]
ms2DB <- as.character(ms1Info$MSMS[i])
ms2DB <- strsplit(ms2DB, ";", fixed=TRUE)
ms2DB <- strsplit(unlist(ms2DB), " ", fixed=TRUE)
ms2DB <- list2dataframe(ms2DB)
ms2DB <- na.omit(ms2DB)
ms2DB <- ms2DB[which(ms2DB[,1] < (mzi+ms2DeltaMZ)),]
if (nrow(ms2DB)==0){
next()
}
ms2ActInRaw <- ms1ms2Match(mzi,tri,ms1DeltaMZ,deltaTR,mgfMatrix,mgfData,ms2Mode,diaMethod)
if (length(ms2ActInRaw) == 0){
DP[i] <- NA
RDP[i] <- NA
frag.ratio[i] <- NA
score[i] <- "Can't find MS2"
MSMS.Exp[i] <- NA
}
else if (length(ms2ActInRaw) == 1){
ms2Act <- ms2ActInRaw[[1]]
ms2Act <- strsplit(ms2Act, " ", fixed=TRUE)
ms2Act <- list2dataframe(ms2Act)
ms2Act <- na.omit(ms2Act)
ms2Act <- ms2Act[which(ms2Act[,1] < (mzi+ms2DeltaMZ)),]
ms2DB <- as.character(ms1Info$MSMS[i])
ms2DB <- strsplit(ms2DB, ";", fixed=TRUE)
ms2DB <- strsplit(unlist(ms2DB), " ", fixed=TRUE)
ms2DB <- list2dataframe(ms2DB)
ms2DB <- na.omit(ms2DB)
ms2DB <- ms2DB[which(ms2DB[,1] < (mzi+ms2DeltaMZ)),]
if (nrow(ms2Act)==0){
DP[i] <- NA
RDP[i] <- NA
frag.ratio[i] <- NA
score[i] <- 0
MSMS.Exp[i] <- NA
}else{
DP[i] <- ms2Score(ms2Act, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "obverse")
RDP[i] <- ms2Score(ms2Act, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "reverse")
frag.ratio[i] <- ms2Score(ms2Act, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "matched.fragments.ratio")
score[i] <- ms2Score(ms2Act, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode)
MSMS.Exp[i] <- paste(ms2ActInRaw[[1]],collapse=";")
}
}
else{
candidateScore <- vector(mode="character",length = length(ms2ActInRaw))
for (j in c(1:length(ms2ActInRaw))){
ms2Act <- ms2ActInRaw[[j]]
ms2Act <- strsplit(as.character(ms2Act), " ", fixed=TRUE)
ms2Act <- list2dataframe(ms2Act)
ms2Act <- na.omit(ms2Act)
ms2Act <- ms2Act[which(ms2Act[,1] < (mzi+ms2DeltaMZ)),]
ms2DB <- as.character(ms1Info$MSMS[i])
ms2DB <- strsplit(ms2DB, ";", fixed=TRUE)
ms2DB <- strsplit(unlist(ms2DB), " ", fixed=TRUE)
ms2DB <- list2dataframe(ms2DB)
ms2DB <- na.omit(ms2DB)
ms2DB <- ms2DB[which(ms2DB[,1] < (mzi+ms2DeltaMZ)),]
if (nrow(ms2Act)==0){
candidateScore[j] <- 0
}else{
candidateScore[j] <- ms2Score(ms2Act, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode)
}
}
ms2DB.DPs <- ms2ActInRaw[[which.max(candidateScore)]]
ms2DB.DPs <- strsplit(ms2DB.DPs, " ", fixed=TRUE)
ms2DB.DPs <- list2dataframe(ms2DB.DPs)
ms2DB.DPs <- na.omit(ms2DB.DPs)
DP[i] <- ms2Score(ms2DB.DPs, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "obverse")
RDP[i] <- ms2Score(ms2DB.DPs, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "reverse")
frag.ratio[i] <- ms2Score(ms2DB.DPs, ms2DB, ms2DeltaMZ, sn.threshold = MS2.sn.threshold, noise.intensity = MS2.noise.intensity, missing.value.padding = MS2.missing.value.padding, scoreMode = "matched.fragments.ratio")
score[i] = max(candidateScore)
MSMS.Exp[i] <- paste(ms2ActInRaw[[which.max(candidateScore)]],collapse=";")
}
}
close(pb)
ms2ScoreResult <- cbind(ms1Info,MSMS.Exp,DP,RDP,frag.ratio,score)
return(ms2ScoreResult)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.