R/IBD.R

Defines functions snpgdsIndivBetaRel snpgdsIndivBeta snpgdsFst .paramFst snpgdsMergeGRM print.snpgdsGRMClass snpgdsGRM snpgdsIBDSelection print.snpgdsDissClass snpgdsDiss snpgdsIBDKING snpgdsPairIBDMLELogLik snpgdsPairIBD snpgdsIBDMLELogLik snpgdsIBDMLE print.snpgdsIBDClass snpgdsIBDMoM

Documented in snpgdsDiss snpgdsFst snpgdsGRM snpgdsIBDKING snpgdsIBDMLE snpgdsIBDMLELogLik snpgdsIBDMoM snpgdsIBDSelection snpgdsIndivBeta snpgdsIndivBetaRel snpgdsMergeGRM snpgdsPairIBD snpgdsPairIBDMLELogLik

#######################################################################
#
# Package name: SNPRelate
#
# Description:
#     A High-performance Computing Toolset for Relatedness and
# Principal Component Analysis of SNP Data
#
# Copyright (C) 2011 - 2022        Xiuwen Zheng
# License: GPL-3
#


#######################################################################
# Identity-by-Descent (IBD) analysis
#######################################################################

#######################################################################
# Calculate the IBD matrix (PLINK method of moment)
#

snpgdsIBDMoM <- function(gdsobj, sample.id=NULL, snp.id=NULL,
    autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
    allele.freq=NULL, kinship=FALSE, kinship.constraint=FALSE, num.thread=1L,
    useMatrix=FALSE, verbose=TRUE)
{
    # check
    ws <- .InitFile2(
        cmd="IBD analysis (PLINK method of moment) on genotypes:",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, allele.freq=allele.freq,
        num.thread=num.thread,
        verbose=verbose)

    stopifnot(is.logical(kinship), length(kinship)==1L)
    stopifnot(is.logical(kinship.constraint), length(kinship.constraint)==1L)
    stopifnot(is.logical(useMatrix), length(useMatrix)==1L)

    # verbose
    if (verbose & !is.null(ws$allele.freq))
    {
        cat(sprintf("Specifying allele frequencies, mean: %0.3f, sd: %0.3f\n",
            mean(ws$allele.freq, na.rm=TRUE),
            sd(ws$allele.freq, na.rm=TRUE)))
        cat("*** A correction factor based on allele count is not used,",
            "since the allele frequencies are specified.\n")
    }

    # call C function
    rv <- .Call(gnrIBD_PLINK, ws$num.thread, as.double(ws$allele.freq),
        !is.null(ws$allele.freq), kinship.constraint, useMatrix, verbose)
    names(rv) <- c("k0", "k1", "afreq")

    # return
    ans <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, afreq=rv$afreq)
    ans$afreq[ans$afreq < 0] <- NaN
    if (isTRUE(useMatrix))
    {
        ans$k0 <- .newmat(ws$n.samp, rv$k0)
        ans$k1 <- .newmat(ws$n.samp, rv$k1)
    } else {
        ans$k0 <- rv$k0
        ans$k1 <- rv$k1
    }
    if (kinship)
        ans$kinship <- 0.5*(1 - ans$k0 - ans$k1) + 0.25*ans$k1
    class(ans) <- "snpgdsIBDClass"
    return(ans)
}

print.snpgdsIBDClass <- function(x, ...) str(x)


#######################################################################
# Calculate the identity-by-descent (IBD) matrix (MLE)
#

snpgdsIBDMLE <- function(gdsobj, sample.id=NULL, snp.id=NULL,
    autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
    kinship=FALSE, kinship.constraint=FALSE, allele.freq=NULL,
    method=c("EM", "downhill.simplex", "Jacquard"), max.niter=1000L,
    reltol=sqrt(.Machine$double.eps), coeff.correct=TRUE, out.num.iter=TRUE,
    num.thread=1, verbose=TRUE)
{
    # check
    ws <- .InitFile2(
        cmd="Identity-By-Descent analysis (MLE) on genotypes:",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, allele.freq=allele.freq,
        num.thread=num.thread, verbose=verbose)

    method <- match.arg(method)
    if (method == "EM")
        method <- 0L
    else if (method == "downhill.simplex")
        method <- 1L
    else if (method == "Jacquard")
        method <- 2L
    else
        stop("Invalid MLE method!")

    stopifnot(is.logical(kinship))
    stopifnot(is.logical(kinship.constraint))
    stopifnot(is.numeric(max.niter))
    stopifnot(is.numeric(reltol))
    stopifnot(is.logical(coeff.correct))
    stopifnot(is.logical(out.num.iter))

    # check
    if (verbose & !is.null(ws$allele.freq))
    {
        cat(sprintf("Specifying allele frequencies, mean: %0.3f, sd: %0.3f\n",
            mean(ws$allele.freq, na.rm=TRUE),
            sd(ws$allele.freq, na.rm=TRUE)))
    }

    if (method != 2L)
    {
        # call C function
        rv <- .Call(gnrIBD_MLE, ws$allele.freq,
            as.logical(kinship.constraint), as.integer(max.niter),
            as.double(reltol), as.logical(coeff.correct), method,
            out.num.iter, ws$num.thread, verbose)

        # return
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, afreq=rv[[3L]],
            k0=rv[[1L]], k1=rv[[2L]], niter=rv[[4L]])
        if (kinship)
            rv$kinship <- 0.5*(1 - rv$k0 - rv$k1) + 0.25*rv$k1
        rv$afreq[rv$afreq < 0] <- NaN
        class(rv) <- "snpgdsIBDClass"

    } else {
        # call C function
        rv <- .Call(gnrIBD_MLE_Jacquard, ws$allele.freq,
            as.integer(max.niter), as.double(reltol),
            as.logical(coeff.correct), method, out.num.iter, ws$num.thread,
            verbose)

        # return
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, afreq=rv[[9L]],
            D1=rv[[1L]], D2=rv[[2L]], D3=rv[[3L]], D4=rv[[4L]],
            D5=rv[[5L]], D6=rv[[6L]], D7=rv[[7L]], D8=rv[[8L]],
            niter=rv[[10L]])
        if (kinship)
            rv$kinship <- rv$D1 + 0.5*(rv$D3 + rv$D5 + rv$D7) + 0.25*rv$D8
        rv$afreq[rv$afreq < 0] <- NaN
        class(rv) <- "snpgdsIBDClass"
    }

    rv
}



#######################################################################
# Calculate the identity-by-descent (IBD) matrix (MLE)
#

snpgdsIBDMLELogLik <- function(gdsobj, ibdobj, k0=NaN, k1=NaN,
    relatedness=c("", "self", "fullsib", "offspring", "halfsib", "cousin",
    "unrelated"))
{
    # check
    stopifnot(inherits(ibdobj, "snpgdsIBDClass"))
    .InitFile(gdsobj, ibdobj$sample.id, ibdobj$snp.id)

    stopifnot(is.numeric(k0), is.vector(k0), length(k0)==1L)
    stopifnot(is.numeric(k1), is.vector(k1), length(k1)==1L)

    relatedness <- match.arg(relatedness)
    if (relatedness == "self")
    {
        k0 <- 0; k1 <- 0
    } else if (relatedness == "fullsib")
    {
        k0 <- 0.25; k1 <- 0.5
    } else if (relatedness == "offspring")
    {
        k0 <- 0; k1 <- 1
    } else if (relatedness == "halfsib")
    {
        k0 <- 0.5; k1 <- 0.5
    } else if (relatedness == "cousin")
    {
        k0 <- 0.75; k1 <- 0.25
    } else if (relatedness == "unrelated")
    {
        k0 <- 1; k1 <- 0
    }

    # call C function
    if (is.finite(k0) & is.finite(k1))
    {
        .Call(gnrIBD_LogLik_k01, ibdobj$afreq, as.double(k0), as.double(k1))
    } else {
        .Call(gnrIBD_LogLik, ibdobj$afreq, ibdobj$k0, ibdobj$k1)
    }
}



#######################################################################
# To calculate the identity-by-descent (IBD) for a pair of SNP
#   genotypes using MLE
#

snpgdsPairIBD <- function(geno1, geno2, allele.freq,
    method=c("EM", "downhill.simplex", "MoM", "Jacquard"),
    kinship.constraint=FALSE, max.niter=1000L, reltol=sqrt(.Machine$double.eps),
    coeff.correct=TRUE, out.num.iter=TRUE, verbose=TRUE)
{
    # check
    stopifnot(is.vector(geno1) & is.numeric(geno1))
    stopifnot(is.vector(geno2) & is.numeric(geno2))
    stopifnot(is.vector(allele.freq) & is.numeric(allele.freq))
    stopifnot(length(geno1) == length(geno2))
    stopifnot(length(geno1) == length(allele.freq))
    stopifnot(is.logical(kinship.constraint))
    stopifnot(is.logical(coeff.correct))

    # method
    method <- match.arg(method)
    method <- match(method, c("EM", "downhill.simplex", "MoM", "Jacquard"))

    allele.freq[!is.finite(allele.freq)] <- -1
    flag <- (0 <= allele.freq) & (allele.freq <= 1)
    if (sum(flag) < length(geno1))
    {
        if (verbose)
        {
            cat("IBD MLE for", sum(flag), 
                "SNPs in total, after removing loci with",
                "invalid allele frequencies.\n",
            )
        }
        geno1 <- geno1[flag]; geno2 <- geno2[flag]
        allele.freq <- allele.freq[flag]
    }

    # call C code
    rv <- .Call(gnrPairIBD, as.integer(geno1), as.integer(geno2),
        as.double(allele.freq), kinship.constraint, max.niter, reltol,
        coeff.correct, method)

    # return
    if (method != 4L)
    {
        ans <- data.frame(k0=rv[1L], k1=rv[2L], loglik=rv[3L])
        if (out.num.iter) ans$niter <- as.integer(rv[4L])
    } else {
        ans <- data.frame(D1=rv[1L], D2=rv[2L], D3=rv[3L], D4=rv[4L],
            D5=rv[5L], D6=rv[6L], D7=rv[7L], D8=rv[8L], loglik=rv[9L])
        if (out.num.iter) ans$niter <- as.integer(rv[10L])
    }
    ans
}



#######################################################################
# Calculate the identity-by-descent (IBD) matrix (MLE)
#

snpgdsPairIBDMLELogLik <- function(geno1, geno2, allele.freq, k0=NaN, k1=NaN,
    relatedness=c("", "self", "fullsib", "offspring", "halfsib", "cousin",
    "unrelated"), verbose=TRUE)
{
    # check
    stopifnot(is.vector(geno1) & is.numeric(geno1))
    stopifnot(is.vector(geno2) & is.numeric(geno2))
    stopifnot(is.vector(allele.freq) & is.numeric(allele.freq))
    stopifnot(length(geno1) == length(geno2))
    stopifnot(length(geno1) == length(allele.freq))
    stopifnot(is.numeric(k0))
    stopifnot(is.numeric(k1))
    stopifnot(is.character(relatedness))

    allele.freq[!is.finite(allele.freq)] <- -1
    flag <- (0 <= allele.freq) & (allele.freq <= 1)
    if (sum(flag) < length(geno1))
    {
        if (verbose)
        {
            cat("IBD MLE for", sum(flag),
                "SNPs in total, after removing loci with",
                "invalid allele frequencies.\n",
            )
        }
        geno1 <- geno1[flag]; geno2 <- geno2[flag]
        allele.freq <- allele.freq[flag]
    }

    # relatedness
    relatedness <- relatedness[1]
    if (relatedness == "self")
    {
        k0 <- 0; k1 <- 0
    } else if (relatedness == "fullsib")
    {
        k0 <- 0.25; k1 <- 0.5
    } else if (relatedness == "offspring")
    {
        k0 <- 0; k1 <- 1
    } else if (relatedness == "halfsib")
    {
        k0 <- 0.5; k1 <- 0.5
    } else if (relatedness == "cousin")
    {
        k0 <- 0.75; k1 <- 0.25
    } else if (relatedness == "unrelated")
    {
        k0 <- 1; k1 <- 0
    }

    # call C code
    .Call(gnrPairIBDLogLik, as.integer(geno1), as.integer(geno2),
        as.double(allele.freq), as.double(k0), as.double(k1))
}



#######################################################################
# Identity-by-Descent (IBD) analysis using KING robust estimat
#######################################################################

#######################################################################
# Calculate the identity-by-descent (IBD) matrix (KING)
#

snpgdsIBDKING <- function(gdsobj, sample.id=NULL, snp.id=NULL,
    autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
    type=c("KING-robust", "KING-homo"), family.id=NULL,
    num.thread=1L, useMatrix=FALSE, verbose=TRUE)
{
    # check
    ws <- .InitFile2(
        cmd="IBD analysis (KING method of moment) on genotypes:",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, num.thread=num.thread,
        verbose=verbose)
    stopifnot(is.logical(useMatrix), length(useMatrix)==1L)

    type <- match.arg(type)

    # family
    stopifnot(is.null(family.id) | is.vector(family.id))
    if (!is.null(family.id))
    {
        if (ws$n.samp != length(family.id))
            stop("'length(family.id)' should be the number of samples.")
    }
    if (!is.null(sample.id))
        family.id <- family.id[match(sample.id, ws$sample.id)]

    # family id
    if (is.vector(family.id))
    {
        if (is.character(family.id))
            family.id[family.id == ""] <- NA
        family.id <- as.factor(family.id)
        if (verbose & (type=="KING-robust"))
        {
            .cat("# of families: ", nlevels(family.id),
                ", and within- and between-family relationship ",
                "are estimated differently.")
        }
    } else {
        if (verbose & (type=="KING-robust"))
            cat("No family is specified, and all individuals are treated as singletons.\n")
        family.id <- rep(NA, ws$n.samp)
    }

    if (type == "KING-homo")
    {
        if (verbose)
            cat("Relationship inference in a homogeneous population.\n")

        # call the C function
        v <- .Call(gnrIBD_KING_Homo, ws$num.thread, useMatrix, verbose)
        # output
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, afreq=NULL)
        if (isTRUE(useMatrix))
        {
            rv$k0 <- .newmat(ws$n.samp, v[[1L]])
            rv$k1 <- .newmat(ws$n.samp, v[[2L]])
        } else {
            rv$k0 <- v[[1L]]
            rv$k1 <- v[[2L]]
        }
    } else if (type == "KING-robust")
    {
        if (verbose)
            cat("Relationship inference in the presence of population stratification.\n")
        # call the C function
        v <- .Call(gnrIBD_KING_Robust, as.integer(family.id),
            ws$num.thread, useMatrix, verbose)
        # output
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, afreq=NULL)
        if (isTRUE(useMatrix))
        {
            rv$IBS0 <- .newmat(ws$n.samp, v[[1L]])
            rv$kinship <- .newmat(ws$n.samp, v[[2L]])
        } else {
            rv$IBS0 <- v[[1L]]
            rv$kinship <- v[[2L]]
        }
    } else
        stop("Invalid 'type'.")

    # return
    if (!is.null(rv$afreq))
        rv$afreq[rv$afreq < 0] <- NaN
    class(rv) <- "snpgdsIBDClass"
    return(rv)
}




#######################################################################
# Genetic dissimilarity analysis
#######################################################################

#######################################################################
# Calculate the genetic dissimilarity matrix
#

snpgdsDiss <- function(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
    remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, num.thread=1, verbose=TRUE)
{
    # check
    ws <- .InitFile2(
        cmd="Individual dissimilarity analysis on genotypes:",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, num.thread=num.thread,
        verbose=verbose)

    # call C function
    d <- .Call(gnrDiss, ws$num.thread, verbose)

    # return
    ans <- list(sample.id=ws$sample.id, snp.id=ws$snp.id, diss=d)
    class(ans) <- "snpgdsDissClass"
    return(ans)
}

print.snpgdsDissClass <- function(x, ...) str(x)


#######################################################################
#
#######################################################################

#######################################################################
# Return a data.frame of pairs of individuals with IBD coefficients
#

snpgdsIBDSelection <- function(ibdobj, kinship.cutoff=NaN, samp.sel=NULL)
{
    # check
    stopifnot(inherits(ibdobj, "snpgdsIBDClass"))
    stopifnot(is.numeric(kinship.cutoff))
    stopifnot(is.null(samp.sel) | is.logical(samp.sel) | is.numeric(samp.sel))
    if (is.logical(samp.sel))
        stopifnot(length(samp.sel) == length(ibdobj$sample.id))

    # the variables in the output
    ns <- setdiff(names(ibdobj), c("sample.id", "snp.id", "afreq"))

    # subset
    if (!is.null(samp.sel))
    {
        ibdobj$sample.id <- ibdobj$sample.id[samp.sel]
        for (i in ns)
            ibdobj[[i]] <- ibdobj[[i]][samp.sel, samp.sel]
    }

    if (is.null(ibdobj$kinship))
    {
        if (!is.null(ibdobj$k0) && !is.null(ibdobj$k1))
        {
            ibdobj$kinship <- (1 - ibdobj$k0 - ibdobj$k1)*0.5 + ibdobj$k1*0.25
            ns <- c(ns, "kinship")
        } else if (!is.null(ibdobj$D1))
        {
            ibdobj$kinship <- ibdobj$D1 +
                0.5*(ibdobj$D3 + ibdobj$D5 + ibdobj$D7) + 0.25*ibdobj$D8
            ns <- c(ns, "kinship")
        } else {
            if (is.finite(kinship.cutoff))
                stop("There is no kinship coefficient.")
        }
    }

    if (is.finite(kinship.cutoff))
    {
        flag <- lower.tri(ibdobj$kinship) & (ibdobj$kinship >= kinship.cutoff)
        flag[is.na(flag)] <- FALSE
    } else {
        flag <- lower.tri(ibdobj$kinship)
    }

    xx <- flag
    if (inherits(flag, "Matrix")) xx <- as.matrix(xx)

    # get indexes
    if (length(xx) > 2147483647)
    {
        # work around long vector
        v <- apply(xx, 2L, function(x) which(x))
        n <- lengths(v)
        i <- which(n > 0L)
        ii <- data.frame(i1=unlist(v[i]), i2=rep(i, times=n[i]))
    } else {
        ii <- which(xx, TRUE)
    }

    # output
    ans <- data.frame(
        ID1 = ibdobj$sample.id[ii[,2L]], ID2 = ibdobj$sample.id[ii[,1L]],
        stringsAsFactors=FALSE)
    for (i in ns)
        ans[[i]] <- ibdobj[[i]][flag]

    ans
}



#######################################################################
# Genetic Relatedness
#######################################################################

#######################################################################
# Genetic relationship matrix (GRM)
#

snpgdsGRM <- function(gdsobj, sample.id=NULL, snp.id=NULL,
    autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
    method=c("GCTA", "Eigenstrat", "EIGMIX", "Weighted", "Corr", "IndivBeta"),
    num.thread=1L, useMatrix=FALSE, out.fn=NULL, out.prec=c("double", "single"),
    out.compress="LZMA_RA", with.id=TRUE, verbose=TRUE)
{
    # check and initialize ...
    method <- match.arg(method)
    mtxt <- method
    if (method == "Weighted")
    {
        method <- "EIGMIX"
        mtxt <- "Weighted GCTA"
    } else if (method == "Corr")
    {
        mtxt <- "Scaled GCTA (correlation)"
    }

    stopifnot(is.logical(useMatrix), length(useMatrix)==1L)
    stopifnot(is.logical(with.id), length(with.id)==1L)
    ws <- .InitFile2(
        cmd=paste("Genetic Relationship Matrix (GRM, ", mtxt, "):", sep=""),
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, num.thread=num.thread,
        verbose=verbose)

    if (!is.null(out.fn))
    {
        # gds output
        stopifnot(is.character(out.fn), length(out.fn)==1L)
        out.prec <- match.arg(out.prec)
        if (out.prec=="single") out.prec <- "float32"
        # create a gds file
        out.gds <- createfn.gds(out.fn)
        on.exit(closefn.gds(out.gds))
        put.attr.gdsn(out.gds$root, "FileFormat", "SNPRELATE_OUTPUT")
        put.attr.gdsn(out.gds$root, "version",
            paste0("SNPRelate_", packageVersion("SNPRelate")))
        add.gdsn(out.gds, "command", c("snpgdsGRM", paste(":method =", method)))
        add.gdsn(out.gds, "sample.id", ws$sample.id, compress=out.compress,
            closezip=TRUE)
        add.gdsn(out.gds, "snp.id", ws$snp.id, compress=out.compress,
            closezip=TRUE)
        sync.gds(out.gds)
        add.gdsn(out.gds, "grm", storage=out.prec, valdim=c(ws$n.samp, 0L),
            compress=out.compress)
    } else
        out.gds <- NULL

    # call GRM C function
    rv <- .Call(gnrGRM, ws$num.thread, method, out.gds, useMatrix, verbose)

    # return
    if (is.null(out.gds))
    {
        if (isTRUE(useMatrix))
            rv <- .newmat(ws$n.samp, rv)
		if (with.id)
		{
			rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id,
				method=method, grm=rv)
            if (method %in% c("IndivBeta"))
                rv$avg_val <- .Call(gnrGRM_avg_val)
            class(rv) <- "snpgdsGRMClass"
		}
        rv
    } else {
        if (method %in% c("IndivBeta"))
            add.gdsn(out.gds, "avg_val", .Call(gnrGRM_avg_val))
        invisible()
    }
}

print.snpgdsGRMClass <- function(x, ...) str(x)


#######################################################################
# Merge GRMs in the GDS files
#

snpgdsMergeGRM <- function(filelist, out.fn=NULL, out.prec=c("double", "single"),
    out.compress="LZMA_RA", weight=NULL, verbose=TRUE)
{
    # check
    stopifnot(is.character(filelist), length(filelist)>0L)
    stopifnot(is.logical(verbose), length(verbose)==1L)
    stopifnot(is.null(out.fn) || is.character(out.fn))
    stopifnot(is.character(out.compress), length(out.compress)==1L)
    out.prec <- match.arg(out.prec)
    if (out.prec=="single") out.prec <- "float32"
    if (!is.null(weight))
    {
        stopifnot(is.numeric(weight) || is.logical(weight),
            length(weight)==length(filelist))
    }

    # open the existing GDS files
    gdslist <- vector("list", length(filelist))
    on.exit({
        for (i in seq_along(filelist))
        {
            if (!is.null(gdslist[[i]]))
                closefn.gds(gdslist[[i]])
        }
    })
    if (verbose)
        cat("GRM merging:\n")

    for (i in seq_along(filelist))
    {
        gdslist[[i]] <- f <- openfn.gds(filelist[i])
        if (!identical(get.attr.gdsn(f$root)$FileFormat, "SNPRELATE_OUTPUT"))
            stop("'", filelist[i], "' is not valid.")
        if (verbose)
        {
            n <- prod(objdesp.gdsn(index.gdsn(f, "snp.id"))$dim)
            .cat("    open '", filelist[i], "' (", prettyNum(n, ","), " variants)")
        }
    }

    # check the existing GDS files
    sampid <- read.gdsn(index.gdsn(gdslist[[1L]], "sample.id"))
    dm <- objdesp.gdsn(index.gdsn(gdslist[[1L]], "grm"))$dim
    if (length(dm)!=2L || dm[1L]!=dm[2L])
        stop("'", filelist[i], "' has an invalid GRM matrix.")
    cmd <- read.gdsn(index.gdsn(gdslist[[1L]], "command"))
    if (cmd[1L] != "snpgdsGRM")
        stop("The GDS files should be created by snpgdsGRM()")
    for (i in seq_along(filelist))
    {
        f <- gdslist[[i]]
        if (!identical(read.gdsn(index.gdsn(f, "command")), cmd))
            stop("'", filelist[i], "' has a different command.")
        if (!identical(objdesp.gdsn(index.gdsn(f, "grm"))$dim, dm))
            stop("'", filelist[i], "' has a different GRM matrix.")
    }

    # weights
    if (is.null(weight) | is.logical(weight))
    {
        num <- sapply(gdslist, function(f)
            prod(objdesp.gdsn(index.gdsn(f, "snp.id"))$dim))
        if (is.logical(weight))
            num[!weight] <- -num[!weight]
        weight <- num / sum(num)
    }
    if (verbose)
        .cat("Weight: ", paste(sprintf("%g", weight), collapse=", "))

    if (!is.null(out.fn))
    {
        # create an output GDS file
        out.gds <- createfn.gds(out.fn)
        on.exit(closefn.gds(out.gds), add=TRUE)
        if (verbose)
            cat("Output: ", out.fn, "\n", sep="")
        put.attr.gdsn(out.gds$root, "FileFormat", "SNPRELATE_OUTPUT")
        put.attr.gdsn(out.gds$root, "version",
            paste0("SNPRelate_", packageVersion("SNPRelate")))
        add.gdsn(out.gds, "command", cmd)
        add.gdsn(out.gds, "sample.id", sampid, compress=out.compress,
            closezip=TRUE)
    } else {
        out.gds <- NULL
    }

    # snp.id
    sid <- NULL
    for (i in seq_along(filelist))
    {
        s <- read.gdsn(index.gdsn(gdslist[[i]], "snp.id"))
        if (weight[i] >= 0)
            sid <- c(sid, s)
        else
            sid <- setdiff(sid, s)
    }
    if (!is.null(out.gds))
    {
        add.gdsn(out.gds, "snp.id", sid, compress=out.compress, closezip=TRUE)
        sync.gds(out.gds)
        rm(sid, s)
    }

    # GRM matrix
    if (!is.null(out.gds))
    {
        add.gdsn(out.gds, "grm", storage=out.prec, valdim=c(length(sampid), 0L),
            compress=out.compress)
    }

    # call C
    rv <- .Call(gnrGRMMerge, out.gds, gdslist, cmd[-1L], weight, verbose)

    if (is.null(out.gds))
    {
        rv <- list(sample.id=sampid, snp.id=sid, grm=rv)
        if (cmd[2L] %in% c(":method = IndivBeta"))
            rv$avg_val <- .Call(gnrGRM_avg_val)
        rv
    } else {
        if (cmd[2L] %in% c(":method = IndivBeta"))
            add.gdsn(out.gds, "avg_val", .Call(gnrGRM_avg_val))
        invisible()
    }
}



#######################################################################
# F_st estimation
#

.paramFst <- function(sample.id, population, method=c("W&C84", "W&H02"), ws)
{
    method <- match.arg(method)
    stopifnot(is.factor(population))

    if (is.null(sample.id))
    {
        if (length(population) != ws$n.samp)
        {
            stop("The length of 'population' should be the number of samples ",
                "in the GDS file.")
        }
    } else {
        if (length(population) != length(sample.id))
        {
            stop("The length of 'population' should be the same as ",
                "the length of 'sample.id'.")
        }
        population <- population[match(ws$sample.id, sample.id)]
    }
    if (anyNA(population))
        stop("'population' should not have missing values!")
    if (nlevels(population) <= 1L)
        stop("There should be at least two populations!")
    if (any(table(population) < 1L))
        stop("Each population should have at least one individual.")

    if (ws$verbose)
    {
        if (method == "W&C84")
            cat("Method: Weir & Cockerham, 1984\n")
        else
            cat("Method: Weir & Hill, 2002\n")
        x <- table(population)
        .cat("# of Populations: ", nlevels(population), "\n    ",
            paste(sprintf("%s (%d)", names(x), x), collapse=", "))
    }

    list(population=population, npop=nlevels(population), method=method)
}

snpgdsFst <- function(gdsobj, population, method=c("W&C84", "W&H02"),
    sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE,
    maf=NaN, missing.rate=NaN, with.id=FALSE, verbose=TRUE)
{
    # check
    ws <- .InitFile2(
        cmd="Fst estimation on genotypes:",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, num.thread=1L,
        verbose=verbose, verbose.numthread=FALSE)

    # check
    v <- .paramFst(sample.id, population, method, ws)

    # call C function
    d <- .Call(gnrFst, v$population, v$npop, v$method)

    # return
    if (with.id)
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id)
    else
        rv <- list()
    rv$Fst <- d[[1L]]
    rv$MeanFst <- mean(d[[2L]], na.rm=TRUE)
    rv$FstSNP <- d[[2L]]
    if (method == "W&H02")
    {
        rv$Beta <- d[[3L]]
        colnames(rv$Beta) <- rownames(rv$Beta) <- levels(population)
    }

    rv
}



#######################################################################
# Individual inbreeding and relatedness (beta)
#

snpgdsIndivBeta <- function(gdsobj, sample.id=NULL, snp.id=NULL,
    autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
    method=c("weighted"), inbreeding=TRUE, num.thread=1L, with.id=TRUE,
    useMatrix=FALSE, verbose=TRUE)
{
    # check and initialize ...
    method <- match.arg(method)
    ws <- .InitFile2(
        cmd="Individual Inbreeding and Relatedness (beta estimator):",
        gdsobj=gdsobj, sample.id=sample.id, snp.id=snp.id,
        autosome.only=autosome.only, remove.monosnp=remove.monosnp,
        maf=maf, missing.rate=missing.rate, num.thread=num.thread,
        verbose=verbose)
    stopifnot(is.logical(with.id), length(with.id)==1L)
    stopifnot(is.logical(useMatrix), length(useMatrix)==1L)

    # call GRM C function
    rv <- .Call(gnrIBD_Beta, inbreeding, ws$num.thread, useMatrix, verbose)
    if (isTRUE(useMatrix))
        rv <- .newmat(ws$n.samp, rv)

    # return
    if (isTRUE(with.id))
    {
        rv <- list(sample.id=ws$sample.id, snp.id=ws$snp.id,
            inbreeding=inbreeding, beta=rv, avg_val=.Call(gnrGRM_avg_val))
    }
    return(rv)
}


snpgdsIndivBetaRel <- function(beta, beta_rel, verbose=TRUE)
{
    # check
    stopifnot(is.numeric(beta_rel), length(beta_rel)==1L)
    stopifnot(is.logical(verbose), length(verbose)==1L)
    if (is.list(beta))
    {
        if (!all(c("sample.id", "snp.id", "beta", "inbreeding") %in% names(beta)))
            stop("'beta' should be the object returned from snpgdsIndivBeta() or snpgdsGRM()")
        mat <- beta$beta
        if (!beta$inbreeding)
            diag(mat) <- (diag(mat) - 0.5) * 2
    }

    mat <- (mat - beta_rel) / (1 - beta_rel)
    diag(mat) <- 0.5*diag(mat) + 0.5

    # return
    rv <- list(sample.id=beta$sample.id, snp.id=beta$snp.id, inbreeding=FALSE)
    rv$beta <- mat
    return(rv)
}
zhengxwen/SNPRelate documentation built on Nov. 19, 2024, 1:02 p.m.