#' Longitudinal Mediation Targets
#'
#' Parameter definition for longitudinal mediation
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_mediation, observed_likelihood, intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}} corresponding to the observed likelihood
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention.
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention.
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{outcome_node}}{character, the name of the node that should be treated as the outcome
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_mediation <- R6Class(
classname = "Param_mediation",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, intervention_list_treatment, intervention_list_control) {
# outcome_node is used to check self$supports_outcome_censoring; not checked for now
super$initialize(observed_likelihood, list())
private$.cf_likelihood_treatment <- CF_Likelihood$new(observed_likelihood, intervention_list_treatment)
private$.cf_likelihood_control <- CF_Likelihood$new(observed_likelihood, intervention_list_control)
observed_likelihood$get_likelihoods(observed_likelihood$training_task)
},
clever_covariates = function(tmle_task = NULL, fold_number = "full", update = F, node = NULL, submodel_type = "EIC") {
if (is.null(tmle_task)) { # calculate for obs data task if not specified
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
if (fold_number == "full") { # tmle
list_EIC <- private$.list_EIC
} else if (fold_number == "validation") { # cvtmle
list_EIC <- private$.list_EIC_val
} # load cached obs task clever covariates in case its for convergence check
if (!is.null(list_EIC) & update == F & identical(tmle_task, self$observed_likelihood$training_task)) { # for faster convergence check
if (!is.null(node)) { # return partial list of covariates if requested
return(list_EIC[node])
} else {
return(list_EIC)
}
} else { # note submodel_type; only calculate when i) no cached EIC, ii) forced to update after tlik is updated; or iii) not obs task, such as cf tasks
rm(list_EIC)
# load full_p list first
full_task <- self$observed_likelihood$training_task
full_node_names <- names(full_task$npsem)
full_data <- full_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) # exactly the obs data
full_variable_names <- colnames(full_data)
list_all_predicted_lkd <- lapply(1:length(full_node_names), function(loc_node) {
if (loc_node > 1) {
# currently only support univariate node for t>0
current_variable <- full_task$npsem[[loc_node]]$variables
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)]) # all possible inputs
temp_task <- tmle3_Task$new(temp_input, full_task$npsem[1:loc_node])
temp_target_node <- intersect(self$update_nodes, full_node_names[loc_node])
if (length(temp_target_node) == 1) {
setattr(temp_task, "target_nodes", full_node_names[loc_node])
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
} else {
setattr(temp_task, "target_nodes", "no_update")
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input, output = temp_output) %>% return
}
})
names(list_all_predicted_lkd) <- full_node_names
if (all(tmle_task$nrow == self$observed_likelihood$training_task$nrow,
identical(tmle_task$data[[1]], self$observed_likelihood$training_task$data[[1]])
)) { # for cf or obs tasks
# ZW todo: extend for dynamic treatments
cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(tmle_task)[[1]]
cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(tmle_task)[[1]]
temp_node_names <- names(tmle_task$npsem)
loc_A <- grep("A", temp_node_names)
loc_Z <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) !(strsplit(s, "_")[[1]][1] %in% c("A", "Z")) & strsplit(s, "_")[[1]][2] != 0))
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) # note this is compatible if tmle_task is a cf task
obs_variable_names <- colnames(obs_data)
# ZW todo: to handle long format and wide format
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
names(intervention_levels_treat) <- names(self$intervention_list_treatment)
names(intervention_levels_control) <- names(self$intervention_list_control)
list_H <- get_obs_H_list(tmle_task, obs_data, current_likelihood = self$observed_likelihood,
cf_task_treatment, cf_task_control,
intervention_variables, intervention_levels_treat, intervention_levels_control,
fold_number)
list_Q <- get_obs_Q_list(tmle_task, obs_data,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # val version decided above for fold_number == "validation"
)
list_Q[[length(list_Q)+1]] <- tmle_task$get_tmle_node(length(list_Q))
list_delta_Q <- lapply(1:length(list_H), function(i) {
if (is.null(list_Q[[i]]))
return(NULL)
else {
temp_i_plus <- first(which(!sapply(list_Q[(i+1):length(list_Q)], is.null))) # search for the first non-null loc after i
return(list_Q[[i+temp_i_plus]] - list_Q[[i]])
}
})
list_EIC <- lapply(1:length(list_H), function(i) {
if (is.null(list_H)) NULL else
list_H[[i]]*list_delta_Q[[i]]
})
names(list_EIC) <- temp_node_names
# last column might be needed for some tmle update functions
list_EIC[[length(list_EIC) + 1]] <- do.call(cbind, list_EIC)
names(list_EIC)[length(list_EIC)] <- "IC" # to use in by dimension convergence
if (identical(tmle_task, self$observed_likelihood$training_task)) { # cache for obs task
if (fold_number == "full") {
private$.list_EIC <- list_EIC
} else if (fold_number == "validation") {
private$.list_EIC_val <- list_EIC
}
}
if (!is.null(node)) { # return partial list of covariates if requested
return(list_EIC[node])
} else
return(list_EIC)
} else {
# for library tasks; it's only needed in tlik updates, with single node
if (is.null(node)) stop("Please specify single update node for library tasks")
tmle_task_backup <- tmle_task
tmle_task <- self$observed_likelihood$training_task # let tmle_task be obs task when calculating for library tasks
loc_node <- which(names(tmle_task$npsem) == node)
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t))
obs_variable_names <- names(obs_data)
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
names(intervention_levels_treat) <- names(self$intervention_list_treatment)
names(intervention_levels_control) <- names(self$intervention_list_control)
current_H <- get_current_H(loc_node,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # this is decided above by fold_number
) # this is what we need for logistic submodel
current_Q_next <- get_current_Q(loc_node, which_Q = 1,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # this is decided above by fold_number
)
current_Q <- get_current_Q(loc_node, which_Q = 0,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # this is decided above by fold_number
)
current_delta_Q <- current_Q_next - current_Q
current_EIC <- current_H*current_delta_Q
current_EIC <- list(current_EIC)
names(current_EIC) <- node
return(current_EIC)
}
}
},
estimates = function(tmle_task = NULL, fold_number = "full", update = F) {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
# todo: extend for stochastic
cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(tmle_task)[[1]]
cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(tmle_task)[[1]]
temp_node_names <- names(tmle_task$npsem)
loc_A <- grep("A", temp_node_names)
loc_Z <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) !(strsplit(s, "_")[[1]][1] %in% c("A", "Z")) & strsplit(s, "_")[[1]][2] != 0))
if_not_0 <- sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2] != 0)
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t))
obs_variable_names <- colnames(obs_data)
# ZW todo: to handle long format and wide format
if (fold_number == "full") {
list_EIC <- private$.list_EIC
result <- private$.result
} else if (fold_number == "validation") {
list_EIC <- private$.list_EIC_val
result <- private$.result_val
}
# load full_p list first
full_task <- self$observed_likelihood$training_task
full_node_names <- names(full_task$npsem)
full_data <- full_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) # exactly the obs data
full_variable_names <- colnames(full_data)
list_all_predicted_lkd <- lapply(1:length(full_node_names), function(loc_node) {
if (loc_node > 1) {
# currently only support univariate node for t>0
current_variable <- full_task$npsem[[loc_node]]$variables
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)]) # all possible inputs
temp_task <- tmle3_Task$new(temp_input, full_task$npsem[1:loc_node])
temp_target_node <- intersect(self$update_nodes, full_node_names[loc_node])
if (length(temp_target_node) == 1) {
setattr(temp_task, "target_nodes", full_node_names[loc_node])
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
} else {
setattr(temp_task, "target_nodes", "no_update")
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input, output = temp_output) %>% return
}
})
names(list_all_predicted_lkd) <- full_node_names
# make sure we force update this after each updating step; this helps speed up updater$check_convergence
if (!is.null(list_EIC) & !is.null(result) & update == F) {
return(result)
} else {
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
# nodes to integrate out in the target identification
# only support univaraite node for now; assume treatment level is one
all_possible_RZLY_1 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
last(obs_variable_names)),
rule_values = c(intervention_levels_treat, 1))
all_possible_RZLY_0 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
last(obs_variable_names)),
rule_values = c(intervention_levels_control, 1))
# for each observed L_0 vector, generate all needed combinations, one version for A = 1, one version for A = 0
unique_L0 <- obs_data[, tmle_task$npsem[[1]]$variables] %>% unique
library_L0 <- data.frame(unique_L0, output =
map_dbl(1:nrow(unique_L0), function(which_row) {
temp_all_comb_0 <- cbind(unique_L0[which_row, ], all_possible_RZLY_0, row.names = NULL) %>% suppressWarnings
temp_all_comb_1 <- cbind(unique_L0[which_row, ], all_possible_RZLY_1, row.names = NULL) %>% suppressWarnings
# for all non-A, non-0 variables, calculate the variable by rule
# for Z's, use A = 0 values; outputs are predicted probs at each possible comb
# note that list_all_predicted_lkd is ordered by node
temp_list_0 <- lapply(loc_Z,
function(each_t) {
left_join(temp_all_comb_0, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list_1 <- lapply(loc_RLY,
function(each_t) {
left_join(temp_all_comb_1, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list <- c(temp_list_0, temp_list_1)
pmap_dbl(temp_list, prod) %>% sum %>% return
})
)
# substitution estimator
vec_est <- left_join(obs_data[, tmle_task$npsem[[1]]$variables], library_L0)$output %>% suppressMessages
psi <- mean(vec_est)
list_EIC <- self$clever_covariates(tmle_task, fold_number, submodel_type = "EIC")
list_EIC[[1]] <- vec_est - psi
list_EIC <- list_EIC[-which(names(list_EIC) == "IC")]
vec_D <- list_EIC %>% compact %>% pmap_dbl(sum)
IC <- vec_D
result <- list(psi = psi, IC = IC
# , full_IC = list_EIC
)
# these are cached; unless likelihood is updated, or we force it to update, they shouldn't be changed
if (fold_number == "full") {
private$.result <- result
} else if (fold_number == "validation") {
private$.result_val <- result
}
return(result)
}
}
),
active = list(
name = function() {
param_form <- sprintf("ATE[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_likelihood_treatment = function() {
return(private$.cf_likelihood_treatment)
},
cf_likelihood_control = function() {
return(private$.cf_likelihood_control)
},
intervention_list_treatment = function() {
return(self$cf_likelihood_treatment$intervention_list)
},
intervention_list_control = function() {
return(self$cf_likelihood_control$intervention_list)
},
update_nodes = function() {
# if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
# }
temp_node_names <- names(tmle_task$npsem)
loc_A <- grep("A", temp_node_names)
if_not_0 <- sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2] != 0)
nodes_to_update <- temp_node_names[if_not_0 & !((1:length(temp_node_names)) %in% loc_A)]
# nodes_to_update <- nodes_to_update[-length(nodes_to_update)]
return(nodes_to_update)
},
list_EIC = function() {
return(private$.list_EIC)
},
list_EIC_val = function() {
return(private$.list_EIC_val)
}
),
private = list(
.type = "mediation",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL,
.list_EIC = NULL, # the clever covariates as the EIC
.list_EIC_val = NULL,
.result = NULL,
.result_val = NULL,
.submodel_type_supported = c("EIC")
)
)
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_mediation_survival <- R6Class(
classname = "Param_mediation",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, intervention_list_treatment, intervention_list_control) {
# outcome_node is used to check self$supports_outcome_censoring; not checked for now
super$initialize(observed_likelihood, list())
private$.cf_likelihood_treatment <- CF_Likelihood$new(observed_likelihood, intervention_list_treatment)
private$.cf_likelihood_control <- CF_Likelihood$new(observed_likelihood, intervention_list_control)
# observed_likelihood$get_likelihoods(observed_likelihood$training_task)
},
clever_covariates = function(tmle_task = NULL, fold_number = "full", update = T, node = NULL, submodel_type = "EIC") {
if (is.null(tmle_task)) { # calculate for obs data task if not specified
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
if (fold_number == "full") { # tmle
list_EIC <- private$.list_EIC
} else if (fold_number == "validation") { # cvtmle
list_EIC <- private$.list_EIC_val
} # load cached obs task clever covariates in case its for convergence check
if (!is.null(list_EIC) & update == F & identical(tmle_task, self$observed_likelihood$training_task)) { # for faster convergence check
if (!is.null(node)) { # return partial list of covariates if requested
return(list_EIC[node])
} else {
return(list_EIC)
}
} else { # note submodel_type; only calculate when i) no cached EIC, ii) forced to update after tlik is updated; or iii) not obs task, such as cf tasks
rm(list_EIC)
# load full_p list first
full_task <- self$observed_likelihood$training_task
full_node_names <- names(full_task$npsem)
loc_delta_nodes <- grep("delta_", full_node_names)
if (length(loc_delta_nodes) != 0) full_node_names <- full_node_names[-grep("delta_", full_node_names)] # remove delta nodes for wide format fitting
full_data <- full_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) %>% dplyr::select(!starts_with("delta")) # exactly the obs data
full_variable_names <- colnames(full_data)
list_all_predicted_lkd <- lapply(1:length(full_node_names), function(loc_node) {
if (loc_node > 1) {
current_variable <- full_task$npsem[[loc_node]]$variables
loc_impute <- grep("Y_|A_C_", full_node_names) # remain alive and uncensored before current variable
loc_impute <- loc_impute[loc_impute < loc_node]
if (length(loc_impute) == 0) { # no subject can drop out/die yet
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)]) # all possible inputs
} else {
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)],
rule_variables = sapply(loc_impute, function(s) full_task$npsem[[s]]$variables),
rule_values = rep(1, length(loc_impute))
) # all possible inputs
}
delta_vars <- names(sapply(paste0("delta_", full_node_names[1:loc_node]), function(x) grep(x, names(full_task$npsem))) %>% compact %>% unlist)
if (length(delta_vars) > 0) {
temp_input <- cbind(temp_input, matrix(T, 1, length(delta_vars)))
colnames(temp_input)[(ncol(temp_input) - length(delta_vars) + 1):ncol(temp_input)] <- delta_vars
}
temp_task <- tmle3_Task$new(temp_input, full_task$npsem[c(1:loc_node,
sapply(paste0("delta_", full_node_names[1:loc_node]), function(x) grep(x, names(full_task$npsem))) %>% compact %>% unlist
)])
temp_target_node <- intersect(self$update_nodes, full_node_names[loc_node])
if (length(temp_target_node) == 1) {
# for each short task, only the last node (if it is an update_node) needs to be updated
setattr(temp_task, "target_nodes", temp_target_node)
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
} else {
# A nodes won't get updated
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input[1:which(full_variable_names == current_variable)], output = temp_output) %>% return
}
})
names(list_all_predicted_lkd) <- full_node_names
if (all(tmle_task$nrow == self$observed_likelihood$training_task$nrow,
identical(tmle_task$data[[1]], self$observed_likelihood$training_task$data[[1]])
)) { # for cf or obs tasks
# ZW todo: extend for dynamic treatments
cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(tmle_task)[[1]]
cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(tmle_task)[[1]]
temp_node_names <- names(tmle_task$npsem)
loc_delta_nodes <- grep("delta_", temp_node_names)
if (length(loc_delta_nodes) != 0) temp_node_names <- temp_node_names[-grep("delta_", temp_node_names)] # remove delta nodes for wide format fitting
loc_A_E <- grep("A_E", temp_node_names)
loc_A_C <- grep("A_C", temp_node_names)
loc_Z <- which(sapply(temp_node_names, function(s) paste0(head(strsplit(s, "_")[[1]], -1), collapse = "_") == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) !(paste0(head(strsplit(s, "_")[[1]], -1), collapse = "_") %in% c("A_C", "A_E", "A", "Z")) & tail(strsplit(s, "_")[[1]], 1) != 0))
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) %>% dplyr::select(!starts_with("delta")) # note this is compatible if tmle_task is a cf task
obs_variable_names <- colnames(obs_data)
# ZW todo: to handle long format and wide format
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
names(intervention_levels_treat) <- names(self$intervention_list_treatment)
names(intervention_levels_control) <- names(self$intervention_list_control)
list_H <- get_obs_H_list(tmle_task, obs_data, current_likelihood = self$observed_likelihood,
cf_task_treatment, cf_task_control,
intervention_variables, intervention_levels_treat, intervention_levels_control,
fold_number)
list_Q <- get_obs_Q_list(tmle_task, obs_data,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # val version decided above for fold_number == "validation"
)
temp_vec <- tmle_task$get_tmle_node(length(list_Q))
temp_vec <- temp_vec[!is.na(temp_vec)]
list_Q[[length(list_Q)+1]] <- temp_vec
list_delta_Q <- lapply(1:length(list_H), function(i) {
if (is.null(list_Q[[i]]))
return(NULL)
else {
temp_i_plus <- first(which(!sapply(list_Q[(i+1):length(list_Q)], is.null))) # search for the first non-null loc after i
if (length(list_Q[[i+temp_i_plus]]) != length(list_Q[[i]])) { # length not equal means there is a new censoring node
loc_A_C_used <- loc_A_C[loc_A_C<i]
temp_ind <- tmle_task$get_tmle_node(last(loc_A_C_used))[
tmle_task$get_tmle_node(loc_A_C_used[length(loc_A_C_used) - 1]) == 1
] == 1
temp_ind[is.na(temp_ind)] <- F
temp_delta_Q <- list_Q[[i+temp_i_plus]] - list_Q[[i]][temp_ind]
} else {
temp_delta_Q <- list_Q[[i+temp_i_plus]] - list_Q[[i]]
}
return(temp_delta_Q)
}
})
list_EIC <- lapply(1:length(list_H), function(i) {
if (is.null(list_H[[i]])) return(NULL) else
return(list_H[[i]]*list_delta_Q[[i]])
})
names(list_EIC) <- temp_node_names
list_EIC_inserted <- lapply(1:length(list_EIC), function(i) {
if (!is.null(list_EIC[[i]])) {
if (length(list_EIC[[i]] != nrow(obs_data))) { # fill back 0 indicators in EIC
temp_vec <- vec_if_observed <- tmle_task$get_tmle_node(tmle_task$npsem[[i]]$censoring_node$name)
if (!is.logical(vec_if_observed)) vec_if_observed <- vec_if_observed == 1 # in case it is a binary node
vec_if_observed[is.na(vec_if_observed)] <- F
temp_vec[vec_if_observed] <- list_EIC[[i]]
temp_vec[!vec_if_observed] <- 0
return(temp_vec)
} else {
return(list_EIC[[i]])
}
}
})
# last column might be needed for some tmle update functions
list_EIC[[length(list_EIC) + 1]] <- do.call(cbind, list_EIC_inserted)
names(list_EIC)[length(list_EIC)] <- "IC" # to use in by dimension convergence
if (identical(tmle_task, self$observed_likelihood$training_task)) { # cache for obs task
if (fold_number == "full") {
private$.list_EIC <- list_EIC
} else if (fold_number == "validation") {
private$.list_EIC_val <- list_EIC
}
}
if (!is.null(node)) { # return partial list of covariates if requested
return(list_EIC[node])
} else
return(list_EIC)
} else { # for library tasks; it's only needed in tlik updates, with single node
if (is.null(node)) stop("Please specify single update node for library tasks")
tmle_task_backup <- tmle_task
tmle_task <- self$observed_likelihood$training_task # let tmle_task be obs task when calculating for library tasks
loc_node <- which(names(tmle_task$npsem) == node)
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) %>% dplyr::select(!starts_with("delta")) # note this is compatible if tmle_task is a cf task
obs_variable_names <- names(obs_data)
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
names(intervention_levels_treat) <- names(self$intervention_list_treatment)
names(intervention_levels_control) <- names(self$intervention_list_control)
current_H <- get_current_H(loc_node,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd # this is decided above by fold_number
) # this is what we need for logistic submodel
current_Q_next <- get_current_Q(loc_node, which_Q = 1,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd, # this is decided above by fold_number
if_survival = T
)
current_Q <- get_current_Q(loc_node, which_Q = 0,
tmle_task, obs_variable_names,
intervention_variables, intervention_levels_treat, intervention_levels_control,
list_all_predicted_lkd, # this is decided above by fold_number
if_survival = T
)
current_delta_Q <- current_Q_next - current_Q
current_EIC <- current_H*current_delta_Q
current_EIC <- list(current_EIC)
names(current_EIC) <- node
return(current_EIC)
}
}
},
estimates = function(tmle_task = NULL, fold_number = "full", update = T) {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
temp_node_names <- names(tmle_task$npsem)
loc_delta_nodes <- grep("delta_", temp_node_names)
if (length(loc_delta_nodes) != 0) temp_node_names <- temp_node_names[-grep("delta_", temp_node_names)] # remove delta nodes for wide format fitting
loc_A <- grep("A", temp_node_names) # not used here; it can include both A_E and A_C
loc_Z <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) !(strsplit(s, "_")[[1]][1] %in% c("A", "Z")) & strsplit(s, "_")[[1]][2] != 0))
if_not_0 <- sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2] != 0)
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) %>% dplyr::select(!starts_with("delta")) # note this is compatible if tmle_task is a cf task
obs_variable_names <- colnames(obs_data)
# ZW todo: to handle long format and wide format
if (fold_number == "full") {
list_EIC <- private$.list_EIC
result <- private$.result
} else if (fold_number == "validation") {
list_EIC <- private$.list_EIC_val
result <- private$.result_val
}
# load full_p list for survival
full_task <- self$observed_likelihood$training_task
full_node_names <- names(full_task$npsem)
loc_delta_nodes <- grep("delta_", full_node_names)
if (length(loc_delta_nodes) != 0) full_node_names <- full_node_names[-grep("delta_", full_node_names)] # remove delta nodes for wide format fitting
full_data <- full_task$data %>% as.data.frame %>% dplyr::select(-c(id, t)) %>% dplyr::select(!starts_with("delta")) # note this is compatible if tmle_task is a cf task
full_variable_names <- colnames(full_data)
list_all_predicted_lkd <- lapply(1:length(full_node_names), function(loc_node) {
if (loc_node > 1) {
current_variable <- tmle_task$npsem[[loc_node]]$variables
loc_impute <- grep("Y_|A_C_", full_node_names) # remain alive and uncensored before current variable
loc_impute <- loc_impute[loc_impute < loc_node]
if (length(loc_impute) == 0) { # no subject can drop out/die yet
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)]) # all possible inputs
} else {
temp_input <- expand_values(variables = full_variable_names[1:which(full_variable_names == current_variable)],
rule_variables = sapply(loc_impute, function(s) tmle_task$npsem[[s]]$variables),
rule_values = rep(1, length(loc_impute))
) # all possible inputs
}
delta_vars <- names(sapply(paste0("delta_", full_node_names[1:loc_node]), function(x) grep(x, names(tmle_task$npsem))) %>% compact %>% unlist)
if (length(delta_vars) > 0) {
temp_input <- cbind(temp_input, matrix(T, 1, length(delta_vars)))
colnames(temp_input)[(ncol(temp_input) - length(delta_vars) + 1):ncol(temp_input)] <- delta_vars
}
temp_task <- tmle3_Task$new(temp_input, tmle_task$npsem[c(1:loc_node,
sapply(paste0("delta_", full_node_names[1:loc_node]), function(x) grep(x, names(tmle_task$npsem))) %>% compact %>% unlist
)])
temp_target_node <- intersect(self$update_nodes, full_node_names[loc_node])
if (length(temp_target_node) == 1) {
# for each short task, only the last node (if it is an update_node) needs to be updated
setattr(temp_task, "target_nodes", temp_target_node)
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
} else {
# A nodes won't get updated
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = full_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input[1:which(full_variable_names == current_variable)], output = temp_output) %>% return
}
})
names(list_all_predicted_lkd) <- full_node_names
# make sure we force update this after each updating step; this helps speed up updater$check_convergence
if (!is.null(list_EIC) & !is.null(result) & update == F) {
return(result)
} else {
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
loc_impute <- grep("Y_|A_C_", temp_node_names) # in integral, Y and A_C always 1
# nodes to integrate out in the target identification
# only support univaraite node for now; assume treatment level is one
all_possible_RZLY_1 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
sapply(loc_impute, function(s) tmle_task$npsem[[s]]$variables)),
rule_values = c(intervention_levels_treat,
rep(1, length(loc_impute))))
all_possible_RZLY_0 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
sapply(loc_impute, function(s) tmle_task$npsem[[s]]$variables)),
rule_values = c(intervention_levels_control, 1,
rep(1, length(loc_impute))))
# for each observed L_0 vector, generate all needed combinations, one version for A = 1, one version for A = 0
unique_L0 <- obs_data[, tmle_task$npsem[[1]]$variables] %>% unique
library_L0 <- data.frame(unique_L0, output =
map_dbl(1:nrow(unique_L0), function(which_row) {
temp_all_comb_0 <- cbind(unique_L0[which_row, ], all_possible_RZLY_0, row.names = NULL) %>% suppressWarnings
temp_all_comb_1 <- cbind(unique_L0[which_row, ], all_possible_RZLY_1, row.names = NULL) %>% suppressWarnings
# for all non-A, non-0 variables, calculate the variable by rule
# for Z's, use A = 0 values; outputs are predicted probs at each possible comb
# note that list_all_predicted_lkd is ordered by node
temp_list_0 <- lapply(loc_Z,
function(each_t) {
left_join(temp_all_comb_0, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list_1 <- lapply(loc_RLY,
function(each_t) {
left_join(temp_all_comb_1, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list <- c(temp_list_0, temp_list_1)
pmap_dbl(temp_list, prod) %>% sum %>% return
})
)
# substitution estimator
vec_est <- left_join(obs_data[, tmle_task$npsem[[1]]$variables], library_L0)$output %>% suppressMessages
psi <- mean(vec_est)
list_EIC <- self$clever_covariates(tmle_task, fold_number, submodel_type = "EIC")$"IC"
EIC <- cbind(list_EIC, vec_est - psi)
IC <- rowSums(EIC)
result <- list(psi = psi, IC = IC
# , full_IC = list_EIC
)
# these are cached; unless likelihood is updated, or we force it to update, they shouldn't be changed
if (fold_number == "full") {
private$.result <- result
} else if (fold_number == "validation") {
private$.result_val <- result
}
return(result)
}
}
),
active = list(
name = function() {
param_form <- sprintf("ATE[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_likelihood_treatment = function() {
return(private$.cf_likelihood_treatment)
},
cf_likelihood_control = function() {
return(private$.cf_likelihood_control)
},
intervention_list_treatment = function() {
return(self$cf_likelihood_treatment$intervention_list)
},
intervention_list_control = function() {
return(self$cf_likelihood_control$intervention_list)
},
update_nodes = function() {
# if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
# }
temp_node_names <- names(tmle_task$npsem)
loc_delta_nodes <- grep("delta_", temp_node_names)
if (length(loc_delta_nodes) != 0) temp_node_names <- temp_node_names[-grep("delta_", temp_node_names)] # remove delta nodes for wide format fitting
loc_A <- grep("A", sapply(strsplit(temp_node_names, "_"), function(x) x[1])) # A_E or A_C
if_not_0 <- sapply(strsplit(temp_node_names, "_"), function(x) last(x) != 0)
nodes_to_update <- temp_node_names[if_not_0 & !((1:length(temp_node_names)) %in% loc_A)]
# nodes_to_update <- rev(nodes_to_update)
# nodes_to_update <- nodes_to_update[-length(nodes_to_update)]
return(nodes_to_update)
},
list_EIC = function() {
return(private$.list_EIC)
},
list_EIC_val = function() {
return(private$.list_EIC_val)
}
),
private = list(
.type = "mediation_survival",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL,
.list_EIC = NULL, # the clever covariates as the EIC
.list_EIC_val = NULL,
.result = NULL,
.result_val = NULL,
.submodel_type_supported = c("EIC")
)
)
#' Longitudinal Mediation via projection
#' @importFrom R6 R6Class
#' @importFrom uuid UUIDgenerate
#' @importFrom methods is
#' @family Parameters
#' @keywords data
#'
#' @return \code{Param_base} object
#'
#' @format \code{\link{R6Class}} object.
#'
#' @section Constructor:
#' \code{define_param(Param_ATT, observed_likelihood, intervention_list, ..., outcome_node)}
#'
#' \describe{
#' \item{\code{observed_likelihood}}{A \code{\link{Likelihood}} corresponding to the observed likelihood
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention.
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention.
#' }
#' \item{\code{...}}{Not currently used.
#' }
#' \item{\code{outcome_node}}{character, the name of the node that should be treated as the outcome
#' }
#' }
#'
#' @section Fields:
#' \describe{
#' \item{\code{cf_likelihood_treatment}}{the counterfactual likelihood for the treatment
#' }
#' \item{\code{cf_likelihood_control}}{the counterfactual likelihood for the control
#' }
#' \item{\code{intervention_list_treatment}}{A list of objects inheriting from \code{\link{LF_base}}, representing the treatment intervention
#' }
#' \item{\code{intervention_list_control}}{A list of objects inheriting from \code{\link{LF_base}}, representing the control intervention
#' }
#' }
#' @export
Param_mediation_projection <- R6Class(
classname = "Param_mediation_projection",
portable = TRUE,
class = TRUE,
inherit = Param_base,
public = list(
initialize = function(observed_likelihood, intervention_list_treatment, intervention_list_control, outcome_node = "Y", static_likelihood = NULL, n_resampling = NULL) {
if(inherits(observed_likelihood, "Targeted_Likelihood")){
fold_number <- observed_likelihood$updater$update_fold
} else {
fold_number <- "full"
}
temp_node_names <- names(observed_likelihood$training_task$npsem)
loc_A <- grep("A", temp_node_names)
loc_Z <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) !(strsplit(s, "_")[[1]][1] %in% c("A", "Z")) & strsplit(s, "_")[[1]][2] != 0))
if_not_0 <- sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2] != 0)
tau <- last(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2]))
all_nodes <- names(observed_likelihood$training_task$npsem)
A_nodes <- grep("A", all_nodes, value = T)
Z_nodes <- grep("Z", all_nodes, value = T)
RLY_nodes <- grep("(R|L|Y).[1-9]$", all_nodes, value = T)
private$.static_likelihood <- static_likelihood
private$.update_nodes <- c(Z_nodes, RLY_nodes)
super$initialize(observed_likelihood, list(), outcome_node = outcome_node)
private$.cf_likelihood_treatment <- CF_Likelihood$new(observed_likelihood, intervention_list_treatment)
private$.cf_likelihood_control <- CF_Likelihood$new(observed_likelihood, intervention_list_control)
tmle_task <- observed_likelihood$training_task
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t))
obs_variable_names <- colnames(obs_data)
if (!is.null(n_resampling)) { # use expanded Monte Carlo samples to train the HAL projection
# temp_input <- generate_Zheng_data(B = n_resampling, tau = 1, if_LY_misspec = T) %>% data.frame()
# names(temp_input)[grep("L1_1", names(temp_input))] <- "L_1"
temp_input <- tmle_task$get_tmle_node(temp_node_names[1])
temp_input <- rbind(
temp_input[c(
sample(nrow(temp_input), abs(round(n_resampling)), replace = T)
# 1:n_resampling
), ]
)
for (i in 2:length(temp_node_names)) {
temp_input <- cbind(temp_input, 1) %>% as.data.frame()
names(temp_input)[ncol(temp_input)] <- temp_node_names[i]
temp_task <- tmle3_Task$new(temp_input, tmle_task$npsem[1:i])
temp_input[,ncol(temp_input)] <- rbinom(temp_task$nrow, 1, static_likelihood$get_likelihood(temp_task, node = temp_node_names[i]))
}
# temp_input <- expand_values(variables = obs_variable_names) # all possible inputs
# temp_input <- obs_data
# temp_input <- rbind(
# # obs_data,
# temp_input[c(
# # sample(nrow(temp_input), abs(round(n_resampling)), replace = T)
# 1:n_resampling
# ), ]
# )
temp_input <- data.frame(temp_input,
id = 1:nrow(temp_input),
t = 0)
# temp_input <- rbind(temp_input, obs_data)
temp_task <- tmle3_Task$new(temp_input, tmle_task$npsem)
# private$.cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(temp_task)[[1]]
# private$.cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(temp_task)[[1]]
# Train the gradient
private$.gradient <- Gradient$new(observed_likelihood,
ipw_args = list(cf_likelihood_treatment = self$cf_likelihood_treatment,
cf_likelihood_control = self$cf_likelihood_control,
intervention_list_treatment = self$intervention_list_treatment,
intervention_list_control = self$intervention_list_control,
# cf_task_treatment = self$cf_task_treatment,
# cf_task_control = self$cf_task_control,
static_likelihood = self$static_likelihood
),
projection_task_generator = gradient_generator_middle,
target_nodes = self$update_nodes)
private$.gradient$train_projections(temp_task, fold_number = fold_number)
} else {
# todo: extend for stochastic
# private$.cf_task_treatment <- self$cf_likelihood_treatment$enumerate_cf_tasks(observed_likelihood$training_task)[[1]]
# private$.cf_task_control <- self$cf_likelihood_control$enumerate_cf_tasks(observed_likelihood$training_task)[[1]]
# Train the gradient
private$.gradient <- Gradient$new(observed_likelihood,
ipw_args = list(cf_likelihood_treatment = self$cf_likelihood_treatment,
cf_likelihood_control = self$cf_likelihood_control,
intervention_list_treatment = self$intervention_list_treatment,
intervention_list_control = self$intervention_list_control,
# cf_task_treatment = self$cf_task_treatment,
# cf_task_control = self$cf_task_control,
static_likelihood = self$static_likelihood
),
projection_task_generator = gradient_generator_middle,
target_nodes = self$update_nodes)
private$.gradient$train_projections(self$observed_likelihood$training_task, fold_number = fold_number)
}
setattr(self$observed_likelihood, "target_nodes", self$update_nodes)
self$observed_likelihood$get_likelihoods(self$observed_likelihood$training_task, fold_number = fold_number)
for (node in self$update_nodes) {
temp_long_task <- private$.gradient$expand_task(observed_likelihood$training_task, node)
self$observed_likelihood$get_likelihood(temp_long_task, node, fold_number)
self$observed_likelihood$get_likelihood(observed_likelihood$training_task, node, fold_number)
# private$.gradient$expand_task(private$.cf_task_treatment, node)
# private$.gradient$expand_task(private$.cf_task_control, node)
}
list_all_predicted_lkd <- lapply(1:length(temp_node_names), function(loc_node) {
if (loc_node > 1) {
# currently only support univariate node for t>0
current_variable <- tmle_task$npsem[[loc_node]]$variables
temp_input <- expand_values(variables = obs_variable_names[1:which(obs_variable_names == current_variable)]) # all possible inputs
temp_task <- tmle3_Task$new(temp_input, tmle_task$npsem[1:loc_node])
temp_target_node <- intersect(self$update_nodes, temp_node_names[loc_node])
if (length(temp_target_node) == 1) {
# for each short task, only the last node (if it is an update_node) needs to be updated
setattr(temp_task, "target_nodes", temp_target_node)
for (node in attr(temp_task, "target_nodes")) {
temp_long_task <- private$.gradient$expand_task(temp_task, node)
self$observed_likelihood$get_likelihood(temp_long_task, node, fold_number)
}
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = temp_node_names[loc_node], fold_number) # corresponding outputs
} else {
# A nodes won't get updated
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = temp_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input, output = temp_output) %>% return
}
})
},
clever_covariates = function(tmle_task = NULL, fold_number = "full", node = NULL) {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
update_nodes <- intersect(self$update_nodes, attr(tmle_task, "target_nodes"))
if(!is.null(node)){
update_nodes <- c(node)
}
islong = F
if(is.null(update_nodes)){
update_nodes <- self$update_nodes
} else {
islong= T
}
EICs <- lapply(update_nodes, function(node){
return(self$gradient$compute_component(tmle_task, node, fold_number = fold_number)$EIC)
})
names(EICs) <- update_nodes
EICs[[length(EICs) + 1]] <- do.call(cbind, EICs)
colnames(EICs[[length(EICs)]]) <- update_nodes
EICs[[length(EICs)]] <- as.data.frame(EICs[[length(EICs)]])
names(EICs)[length(EICs)] <- "IC"
return(EICs)
},
estimates = function(tmle_task = NULL, fold_number = "full") {
if (is.null(tmle_task)) {
tmle_task <- self$observed_likelihood$training_task
}
intervention_nodes <- union(names(self$intervention_list_treatment), names(self$intervention_list_control))
# clever_covariates happen here (for this param) only, but this is repeated computation
EIC <- (do.call(cbind, self$clever_covariates(tmle_task, fold_number)$IC))
#TODO need to montecarlo simulate from likleihood to eval parameter.
temp_node_names <- names(self$observed_likelihood$training_task$npsem)
loc_A <- grep("A", temp_node_names)
loc_Z <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] == "Z"))
loc_RLY <- which(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][1] %in% c("R", "L", "Y") & strsplit(s, "_")[[1]][2] != 0))
if_not_0 <- sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2] != 0)
tau <- last(sapply(temp_node_names, function(s) strsplit(s, "_")[[1]][2]))
obs_data <- tmle_task$data %>% as.data.frame %>% dplyr::select(-c(id, t))
obs_variable_names <- colnames(obs_data)
list_all_predicted_lkd <- lapply(1:length(temp_node_names), function(loc_node) {
if (loc_node > 1) {
# currently only support univariate node for t>0
current_variable <- tmle_task$npsem[[loc_node]]$variables
temp_input <- expand_values(variables = obs_variable_names[1:which(obs_variable_names == current_variable)]) # all possible inputs
temp_task <- tmle3_Task$new(temp_input, tmle_task$npsem[1:loc_node])
temp_target_node <- intersect(self$update_nodes, temp_node_names[loc_node])
if (length(temp_target_node) == 1) {
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = temp_node_names[loc_node], fold_number) # corresponding outputs
} else {
temp_output <- self$observed_likelihood$get_likelihood(temp_task, node = temp_node_names[loc_node], fold_number) # corresponding outputs
}
data.frame(temp_input, output = temp_output) %>% return
}
})
intervention_variables <- map_chr(tmle_task$npsem[intervention_nodes], ~.x$variables)
intervention_variables_loc <- map_dbl(intervention_variables, ~grep(.x, obs_variable_names))
intervention_levels_treat <- map_dbl(self$intervention_list_treatment, ~.x$value %>% as.character %>% as.numeric)
intervention_levels_control <- map_dbl(self$intervention_list_control, ~.x$value %>% as.character %>% as.numeric)
# nodes to integrate out in the target identification
# only support univaraite node for now; assume treatment level is one
all_possible_RZLY_1 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
last(obs_variable_names)),
rule_values = c(intervention_levels_treat, 1))
all_possible_RZLY_0 <- expand_values(obs_variable_names, to_drop = c(1:length(tmle_task$npsem[[1]]$variables) ),
rule_variables = c(intervention_variables,
last(obs_variable_names)),
rule_values = c(intervention_levels_control, 1))
# for each observed L_0 vector, generate all needed combinations, one version for A = 1, one version for A = 0
unique_L0 <- obs_data[, tmle_task$npsem[[1]]$variables] %>% unique
library_L0 <- data.frame(unique_L0, output =
map_dbl(1:nrow(unique_L0), function(which_row) {
temp_all_comb_0 <- cbind(unique_L0[which_row, ], all_possible_RZLY_0, row.names = NULL) %>% suppressWarnings
temp_all_comb_1 <- cbind(unique_L0[which_row, ], all_possible_RZLY_1, row.names = NULL) %>% suppressWarnings
# for all non-A, non-0 variables, calculate the variable by rule
# for Z's, use A = 0 values; outputs are predicted probs at each possible comb
# note that list_all_predicted_lkd is ordered by node
temp_list_0 <- lapply(loc_Z,
function(each_t) {
left_join(temp_all_comb_0, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list_1 <- lapply(loc_RLY,
function(each_t) {
left_join(temp_all_comb_1, list_all_predicted_lkd[[each_t]])$output %>% suppressMessages
})
temp_list <- c(temp_list_0, temp_list_1)
pmap_dbl(temp_list, prod) %>% sum %>% return
})
)
vec_est <- left_join(obs_data[, tmle_task$npsem[[1]]$variables], library_L0)$output %>% suppressMessages
psi <- mean(vec_est)
EIC <- cbind(EIC, vec_est - psi)
IC <- rowSums(EIC)
result <- list(psi =
psi
# list_all_predicted_lkd
,
IC = IC, EIC = colMeans(EIC)
# , full_EIC = EIC
)
return(result)
}
),
active = list(
name = function() {
param_form <- sprintf("ATE[%s_{%s}-%s_{%s}]", self$outcome_node, self$cf_likelihood_treatment$name, self$outcome_node, self$cf_likelihood_control$name)
return(param_form)
},
cf_likelihood_treatment = function() {
return(private$.cf_likelihood_treatment)
},
cf_likelihood_control = function() {
return(private$.cf_likelihood_control)
},
cf_task_treatment = function() {
return(private$.cf_task_treatment)
},
cf_task_control = function() {
return(private$.cf_task_control)
},
intervention_list_treatment = function() {
return(self$cf_likelihood_treatment$intervention_list)
},
intervention_list_control = function() {
return(self$cf_likelihood_control$intervention_list)
},
update_nodes = function() {
return(c(private$.update_nodes))
},
gradient = function(){
private$.gradient
},
static_likelihood = function(){
private$.static_likelihood
}
),
private = list(
.type = "mediation",
.cf_likelihood_treatment = NULL,
.cf_likelihood_control = NULL,
.cf_task_treatment = NULL,
.cf_task_control = NULL,
.supports_outcome_censoring = FALSE,
.gradient = NULL,
.submodel_type_supported = c("EIC"),
.update_nodes = NULL,
.static_likelihood = NULL
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.