View source: R/predict_profile.R
predict_profile | R Documentation |
This function calculated individual profiles aka Ceteris Paribus Profiles.
From DALEX version 1.0 this function calls the ceteris_paribus
from the ingredients
package.
Find information how to use this function here: https://ema.drwhy.ai/ceterisParibus.html.
predict_profile( explainer, new_observation, variables = NULL, ..., type = "ceteris_paribus", variable_splits_type = "uniform" ) individual_profile( explainer, new_observation, variables = NULL, ..., type = "ceteris_paribus", variable_splits_type = "uniform" )
explainer |
a model to be explained, preprocessed by the |
new_observation |
a new observation for which predictions need to be explained |
variables |
character - names of variables to be explained |
... |
other parameters |
type |
character, currently only the |
variable_splits_type |
how variable grids shall be calculated? Use "quantiles" (default) for percentiles or "uniform" to get uniform grid of points. Will be passed to 'ingredients'. |
An object of the class ceteris_paribus_explainer
.
It's a data frame with calculated average response.
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
new_dragon <- data.frame(year_of_birth = 200, height = 80, weight = 12.5, scars = 0, number_of_lost_teeth = 5) dragon_lm_model4 <- lm(life_length ~ year_of_birth + height + weight + scars + number_of_lost_teeth, data = dragons) dragon_lm_explainer4 <- explain(dragon_lm_model4, data = dragons, y = dragons$year_of_birth, label = "model_4v") dragon_lm_predict4 <- predict_profile(dragon_lm_explainer4, new_observation = new_dragon, variables = c("year_of_birth", "height", "scars")) head(dragon_lm_predict4) plot(dragon_lm_predict4, variables = c("year_of_birth", "height", "scars")) library("ranger") dragon_ranger_model4 <- ranger(life_length ~ year_of_birth + height + weight + scars + number_of_lost_teeth, data = dragons, num.trees = 50) dragon_ranger_explainer4 <- explain(dragon_ranger_model4, data = dragons, y = dragons$year_of_birth, label = "model_ranger") dragon_ranger_predict4 <- predict_profile(dragon_ranger_explainer4, new_observation = new_dragon, variables = c("year_of_birth", "height", "scars")) head(dragon_ranger_predict4) plot(dragon_ranger_predict4, variables = c("year_of_birth", "height", "scars"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.