PlotScree: plot the scree for the eigenvalues of an SVD based...

View source: R/Plot4CATA.R

PlotScreeR Documentation

plot the scree for the eigenvalues of an SVD based multivariate analysis.

Description

PlotScree: Plot the scree for the eigenvalues of an SVD-based multivariate analysis. Note that the function can recompute the eigen-values when a percentage is given. For example ExPosition does not return all ev but only the requested one. but return all percentage so if max.ev is specified, it is used to recompute all eigenvalues. By default PlotScree will not plot the line corresponding to the average inertia (i.e., Kaiser criterion). If provided with probabilities, PlotScree will color differently the "significant" eigenvalues.

Usage

PlotScree(
  ev,
  p.ev = NULL,
  max.ev = NULL,
  alpha = 0.05,
  col.ns = "#006D2C",
  col.sig = "#54278F",
  title = "Explained Variance per Dimension",
  xlab = "Dimensions",
  plotKaiser = FALSE,
  color4Kaiser = "darkorchid4",
  lwd4Kaiser = 2.5
)

Arguments

ev

the eigenvalues to plot. No default.

p.ev

the probabilities associated to the eigen-values, (default = NULL).

max.ev

the max eigenvalue needed because ExPosition does not always return all eigenvalues but sometimes only the requested ones; however ExPosition always returns all percentages i.e., tau), so if max.ev is specified, it is used to recompute all eigenvalues.

alpha

threshold for significance Default = .05).

col.ns

color for the non significant eigenvalues. Default is 'Green'.

col.sig

color for significant eigen-values. Default is 'Violet'.

title

a title for the graph default is "Explained Variance per Dimension".

xlab

The names of the dimensions (default 'Dimensions ').

plotKaiser

when TRUE plot a line corresponding to the average inertia (Kaiser criterion); do not plot when FALSE (default).

color4Kaiser

color for Kaiser's line (default is 'darkorchid4')

lwd4Kaiser

lwd value (i.e., width) for Kaiser's criterion line. (default is '2.5') # @examples # PlotScree(ev)

Author(s)

Hervé Abdi with help from Derek Beaton and Ju-Chi Yu.


HerveAbdi/PTCA4CATA documentation built on July 17, 2022, 5:41 a.m.