Boot4PTCA | R Documentation |
Boot4PTCA
bootstraps the K-th dimension of a data cube
and computes bootstrapped factor scores.
Boot4PTCA( ZeDataCube, fi, fj, eigs, nf2keep = 2, nBootIter = 100, compact = FALSE, eigen = FALSE, eigen.compact = TRUE )
ZeDataCube |
An I * J * K data cube (K are observations) The third dimension (i.e., K) is bootstrapped. |
fi |
The factor scores for I (rows)
from the |
fj |
The factor scores for J (columns) from the epCA program |
eigs |
The eigenvalues from the epCA program |
nf2keep |
how many factors to keep, default to 2 |
nBootIter |
How many Bootstrap samples, default to 100
|
compact |
(default = |
eigen |
if |
eigen.compact |
when |
With notation:
I: number of rows (of ZeDataCube
),
J: number of columns (of ZeDataCube
),
L: number of factors kept (i.e., nf2keep
),
B: number of Bootstrap replicates (i.e., nBootIter
);
Boot4PTCA
returns
a list if compact FALSE
:
1a) RowsBoot
an
I * L * B cube of Bootstrapped
coordinates for the I-set
1b) RowsBoot.asym
an I * L * B
cube of Bootstrapped
coordinates for the I-set
(asymmetric projections);
2a) ColumnsBoot
a J * L * B
cube of Bootstrapped coordinates
for the J-set
if compact is FALSE
2b)
ColumnsBoot.asym
a J * L * B
cube of Bootstrapped
coordinates for the J-set.
Hervé Abdi
## Not run: BootFactorsIJ <- Boot4PTCAt(A.Cube.Of.Data,fi = fi, fj = fj, eigs = eigs) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.