strategy_logistf | R Documentation |
The strategy contains functions to fit the model but also compute the contrasts etc.
The strategy contains functions to fit the model but also compute the contrasts etc.
strategy_logistf(
modelstr,
model_name = "logistf",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted"),
test = "Chisq"
)
strategy_lmer(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_lm(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_rlm(
modelstr,
model_name = "Model",
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
strategy_glm(
modelstr,
model_name = "Model",
test = "Chisq",
family = stats::binomial,
multiplier = 1,
offset = 1,
report_columns = c("statistic", "p.value", "p.value.adjusted", "moderated.p.value",
"moderated.p.value.adjusted")
)
modelstr |
model formula |
model_name |
name of model |
report_columns |
columns to report |
family |
either binomial or quasibinomial |
multiplier |
for tuning default is 1. |
list with model function, contrast computation function etc.
list with model function, contrast computation function etc.
Other modelling:
Contrasts
,
ContrastsFirth
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
ModelFirth
,
build_model()
,
build_model_logistf()
,
contrasts_fisher_exact()
,
generate_contrasts()
,
generate_contrasts_for_factor()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
group_label()
,
interaction_contrasts()
,
isSingular_lm()
,
level_specific_contrasts()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
main_effect_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
process_factor()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_build_models_logistf()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsFirth
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
ModelFirth
,
build_model()
,
build_model_logistf()
,
contrasts_fisher_exact()
,
generate_contrasts()
,
generate_contrasts_for_factor()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
group_label()
,
interaction_contrasts()
,
isSingular_lm()
,
level_specific_contrasts()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
main_effect_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
process_factor()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_build_models_logistf()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsFirth
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
ModelFirth
,
build_model()
,
build_model_logistf()
,
contrasts_fisher_exact()
,
generate_contrasts()
,
generate_contrasts_for_factor()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
group_label()
,
interaction_contrasts()
,
isSingular_lm()
,
level_specific_contrasts()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
main_effect_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
process_factor()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_build_models_logistf()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsFirth
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
ModelFirth
,
build_model()
,
build_model_logistf()
,
contrasts_fisher_exact()
,
generate_contrasts()
,
generate_contrasts_for_factor()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
group_label()
,
interaction_contrasts()
,
isSingular_lm()
,
level_specific_contrasts()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
main_effect_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
process_factor()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_build_models_logistf()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
Other modelling:
Contrasts
,
ContrastsFirth
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
Model
,
ModelFirth
,
build_model()
,
build_model_logistf()
,
contrasts_fisher_exact()
,
generate_contrasts()
,
generate_contrasts_for_factor()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
group_label()
,
interaction_contrasts()
,
isSingular_lm()
,
level_specific_contrasts()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
main_effect_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
process_factor()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_build_models_logistf()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
summary_ROPECA_median_p.scaled()
tmp <- strategy_logistf("bin_resp ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
tmp$isSingular
istar <- prolfqua::sim_lfq_data_peptide_config(Nprot = 10, with_missing = TRUE, weight_missing = 0.5, seed = 3)
istar$data <- encode_bin_resp(istar$data, istar$config)
istar <- LFQData$new(istar$data, istar$config)
df <- istar$summarize_hierarchy()
df2 <- df[df[[ncol(df)]] > 1, ]
istar2 <- istar$get_subset(df2)
istar2$data |>
dplyr::group_by(protein_Id) |>
tidyr::nest() -> nestProtein
modelFunction <- strategy_logistf("bin_resp ~ group_ + peptide_Id", model_name = "random_example")
modelFunction$model_fun(nestProtein$data[[1]])
modelFunction$model_fun(nestProtein$data[[4]])
istar <- prolfqua::sim_lfq_data_peptide_config(Nprot = 10, with_missing = FALSE)
istar <- prolfqua::LFQData$new(istar$data,istar$config)
istar$data <- istar$data |> dplyr::group_by(protein_Id) |>
dplyr::mutate(abundanceC = abundance - mean(abundance)) |> dplyr::ungroup()
istar$factors()
modelFunction <- strategy_lmer("abundanceC ~ group_ + (1|peptide_Id) ", model_name = "random_example")
mod <- build_model(
istar,
modelFunction)
sum(mod$modelDF$exists_lmer)
sum(mod$modelDF$isSingular, na.rm=TRUE)
tmp <- strategy_lm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
tmp$isSingular
tmp <- strategy_rlm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
tmp$isSingular
tmp <- strategy_glm("Intensity ~ condition", model_name = "parallel design")
tmp$model_fun(get_formula = TRUE)
tmp$isSingular
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.