selection: Heckman-style selection and treatment effect models

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/selection.R

Description

This is the frontend for estimating Heckman-style selection models either with one or two outcomes (also known as generalized tobit models). It supports binary outcomes and interval outcomes in the single-outcome case. It also supports normal-distribution based treatment effect models.

For model specification and more details, see Toomet and Henningsen (2008) and the included vignettes “Sample Selection Models”, “Interval Regression with Sample Selection”, and “All-Normal Treatment Effects”.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
selection(selection, outcome, data = sys.frame(sys.parent()),
   weights = NULL, subset, method = "ml",
   type = NULL,
   start = NULL,
   boundaries = NULL,
   ys = FALSE, xs = FALSE, yo = FALSE, xo = FALSE,
   mfs = FALSE, mfo = FALSE,
   printLevel = print.level, print.level=0,
   ...)

heckit( selection, outcome, data = sys.frame(sys.parent()),
   method = "2step", ... )

treatReg(selection, outcome,
   data=sys.frame(sys.parent()),
   mfs=TRUE, mfo=TRUE,
   ...)

Arguments

selection

formula, the selection equation.

outcome

the outcome equation(s). Either a single equation (for tobit 2 models), or a list of two equations (tobit 5 models).

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which selection is called.

weights

an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector. Weights are currently only supported in type-2 models.

subset

an optional index vector specifying a subset of observations to be used in the fitting process.

method

how to estimate the model. Either "ml" for Maximum Likelihood, "2step" for 2-step estimation, or "model.frame" for returning the model frame (only).

type

model type. NULL will automatically detect the type, but one may also manually determine it. Numeric ‘2’ and ‘5’ are tobit-2 and tobit-5 models respectively, and character “treatment” is treatment effect model.

start

vector, initial values for the ML estimation. If start does not have names, names are constructed based on the model frame.

boundaries

an optional vector of boundaries of the intervals of the dependent variable of the outcome equation for sample selection models with interval regression of the outcome equation.

ys, yo, xs, xo, mfs, mfo

logicals. If true, the response (y), model matrix (x) or the model frame (mf) of the selection (s) or outcome (o) equation(s) are returned.

printLevel, print.level

integer. Various debugging information, higher value gives more information. The preferred option is ‘printLevel’.

...

additional parameters for the corresponding fitting functions tobit2fit, tobit5fit, heckit2fit, heckit5fit, and tobit2Bfit.

Details

The dependent variable of of the selection equation (specified by argument selection) must have exactly two levels (e.g., 'FALSE' and 'TRUE', or '0' and '1'). By default the levels are sorted in increasing order ('FALSE' is before 'TRUE', and '0' is before '1'). If the dependent variable of the outcome equation (specified by argument outcome) has exactly two levels, this variable is modelled as a binary variable. If argument boundaries is specified, the outcome equation is estimated as interval regression model and the dependent variable of the outcome equation must be a categorical (factor) variable or a variable of strictly positive integer values, whereas the vector specified by argument boundaries must have one more element than the number of levels or the largest integer, respectively. In all other cases, it is assumed that the dependent variable of the outcome equation is continuous and an ordinary sample selection model is estimated.

For tobit-2 (sample selection) models, only those observations are included in the second step estimation (argument 'outcome'), where the dependent variable variable of the selection equation equals the second element of its levels (e.g., 'TRUE' or '1').

For tobit-5 (switching regression) models, in the second step the first outcome equation (first element of argument 'outcome') is estimated only for those observations, where the dependent variable of the selection equation equals the first element of its levels (e.g., 'FALSE' or '0'). The second outcome equation is estimated only for those observations, where this variable equals the second element of its levels (e.g., 'TRUE' or '1').

Treatment effect models are a version of tobit-5 models where the two outcomes are “participation” and “non-participation”. treatReg takes an equal set of explanatory variables for both of these choices and assumes that the corresponding parameters are equal. In typical treatment effect model the selection outcome variable (participation decision) is included as an explanatory variable for the outcome. If this is not done, treatReg amounts to estimating two equations with correlated error structure.

NA-s are allowed in the data. These are ignored if the corresponding outcome is unobserved, otherwise observations which contain NA (either in selection or outcome) are removed.

These selection models assume a known (multivariate normal) distribution of error terms. Because of this, the instruments (exclusion restrictions) are not necessary. However, if no instruments are supplied, the results are based solely on the assumption on multivariate normality. This may or may not be an appropriate assumption for a particular problem. Note also that standard errors tend to be large without a strong exclusion restriction.

If argument method is equal to "ml" (the default), the estimation is done by the maximum likelihood method, where the Newton-Raphson algorithm is used by default. Argument maxMethod (see tobit2fit) can be used to chose other algorithms for the maximisation of the (log) likelihood function.

If argument method is equal to "ml" (the default) and argument start is NULL (the default), the starting values for the maximum-likelihood (ML) estimation of a tobit-2 or tobit-5 model are obtained by an initial two-step estimation of this model.

The two-step estimation of interval-regression models with sample-selection has not yet been implemented. If no starting values for a maximum-likelihood (ML) estimation of an interval-regression model with sample-selection are specified (i.e., argument start is NULL, the default), starting values are obtained by an initial estimation of a tobit-2 model, where the dependent variable of the outcome equation is set to the mid points of the boudaries of the intervals. By default, the starting values are obtained by a maximum-likelihood (ML) estimation of the tobit-2 model, whereas the starting values for the maximum-likelihood (ML) estimation of the tobit-2 model are obtained by a 2-step estimation of the tobit-2 model. If argument start is set to "2step", the starting values for the maximum-likelihood (ML) estimation of an interval-regression model with sample-selection are directly obtained by a 2-step estimation of the tobit-2 model (i.e., without a subsequent ML estimation of the tobit-2 model).

Methods that can be applied to objects returned by selection() are described on the help page selection-methods.

Value

'selection' returns an object of class "selection". If the model estimated by Maximum Likelihood (argument method = "ml"), this object is a list, which has all the components of a 'maxLik' object, and in addition the elements 'twoStep', 'start, 'param', 'termS', 'termO', 'outcomeVar', and if requested 'ys', 'xs', 'yo', 'xo', 'mfs', and 'mfo'. If a tobit-2 (sample selection) model is estimated by the two-step method (argument method = "2step"), the returned object is a list with components 'probit', 'coefficients', 'param', 'vcov', 'lm', 'sigma', 'rho', 'invMillsRatio', and 'imrDelta'. If a tobit-5 (switching regression) model is estimated by the two-step method (argument method = "2step"), the returned object is a list with components 'coefficients', 'vcov', 'probit', 'lm1', 'lm2', 'rho1', 'rho2', 'sigma1', 'sigma2', 'termsS', 'termsO', 'param', and if requested 'ys', 'xs', 'yo', 'xo', 'mfs', and 'mfo'.

probit

object of class 'probit' that contains the results of the 1st step (probit estimation) (only for two-step estimations).

twoStep

(only if initial values not given) results of the 2-step estimation, used for initial values

start

initial values for ML estimation

termsS, termsO

terms for the selection and outcome equation

ys, xs, yo, xo, mfs, mfo

response, matrix and frame of the selection- and outcome equations (as a list of two for the latter). NULL, if not requested. The response is represented internally as 0/1 integer vector with 0 denoting either the unobservable outcome (tobit 2) or the first selection (tobit 5).

coefficients

estimated coefficients, the complete model. coefficient for the Inverse Mills ratio is treated as a parameter (= rho * sigma).

vcov

variance covariance matrix of the estimated coefficients.

param

a list with following components: index, a list of numeric vectors: where in the coef the component are located; oIntercept, a logical: whether the outcome equation includes intercept; N0, N1, integer, number of observations with unobserved and observed outcomes; nObs, integer, number of valid observations; nParam, integer, number of the parameters in the model (not all are independent); df, integer, degrees of freedom. Note this is not equal to nObs - nParam because of the parameters are not independent in all the cases; levels levels for the response of the selection equation. levels[1] corresponds to the outcome 1, levels[2] to the outcome 2.

lm, lm1, lm2

objects of class 'lm' that contain the results of the 2nd step estimation(s) of the outcome equation(s). Note: the standard errors of this estimation are biased, because they do not account for the estimation of γ in the 1st step estimation (the correct standard errors are returned by summary and they are contained in vcov component).

sigma, sigma1, sigma2

the standard error(s) of the error terms of the outcome equation(s).

rho, rho1, rho2

the estimated correlation coefficient(s) between the error term of the selection equation and the outcome equation(s).

invMillsRatio

the inverse Mills Ratios calculated from the results of the 1st step probit estimation.

imrDelta

the δs calculated from the inverse Mills Ratios and the results of the 1st step probit estimation.

outcomeVar

character string indicating whether the dependent variable of the outcome equation is "continuous" or "binary".

Note

The 2-step estimate of 'rho' may be outside of the [-1,1] interval. In that case the standard errors of invMillsRatio may be meaningless.

Author(s)

Arne Henningsen, Ott Toomet otoomet@ut.ee

References

Cameron, A. C. and Trivedi, P. K. (2005) Microeconometrics: Methods and Applications, Cambridge University Press.

Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall.

Heckman, J. (1976) The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models, Annals of Economic and Social Measurement, 5(4), p. 475-492.

Johnston, J. and J. DiNardo (1997) Econometric Methods, Fourth Edition, McGraw-Hill.

Lee, L., G. Maddala and R. Trost (1980) Asymetric covariance matrices of two-stage probit and two-stage tobit methods for simultaneous equations models with selectivity. Econometrica, 48, p. 491-503.

Petersen, S., G. Henningsen and A. Henningsen (2017) Which Households Invest in Energy-Saving Home Improvements? Evidence From a Danish Policy Intervention. Unpublished Manuscript. Department of Management Engineering, Technical University of Denmark.

Toomet, O. and A. Henningsen, (2008) Sample Selection Models in R: Package sampleSelection. Journal of Statistical Software 27(7), https://www.jstatsoft.org/v27/i07/

Wooldridge, J. M. (2003) Introductory Econometrics: A Modern Approach, 2e, Thomson South-Western.

See Also

summary.selection, selection-methods, probit, lm, and Mroz87 and RandHIE for further examples.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
## Greene( 2003 ): example 22.8, page 786
data( Mroz87 )
Mroz87$kids  <- ( Mroz87$kids5 + Mroz87$kids618 > 0 )
# Two-step estimation
summary( heckit( lfp ~ age + I( age^2 ) + faminc + kids + educ,
   wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) )
# ML estimation
summary( selection( lfp ~ age + I( age^2 ) + faminc + kids + educ,
   wage ~ exper + I( exper^2 ) + educ + city, Mroz87 ) )

## Example using binary outcome for selection model.
## We estimate the probability of womens' education on their
## chances to get high wage (> $5/hr in 1975 USD), using PSID data
## We use education as explanatory variable
## and add age, kids, and non-work income as exclusion restrictions.
data(Mroz87)
m <- selection(lfp ~ educ + age + kids5 + kids618 + nwifeinc,
   wage >= 5 ~ educ, data = Mroz87 )
summary(m)


## example using random numbers
library( "mvtnorm" )
nObs <- 1000
sigma <- matrix( c( 1, -0.7, -0.7, 1 ), ncol = 2 )
errorTerms <- rmvnorm( nObs, c( 0, 0 ), sigma )
myData <- data.frame( no = c( 1:nObs ), x1 = rnorm( nObs ), x2 = rnorm( nObs ),
   u1 = errorTerms[ , 1 ], u2 =  errorTerms[ , 2 ] )
myData$y <- 2 + myData$x1 + myData$u1
myData$s <- ( 2 * myData$x1 + myData$x2 + myData$u2 - 0.2 ) > 0
myData$y[ !myData$s ] <- NA
myOls <- lm( y ~ x1, data = myData)
summary( myOls )
myHeckit <- heckit( s ~ x1 + x2, y ~ x1, myData, print.level = 1 )
summary( myHeckit )

## example using random numbers with IV/2SLS estimation
library( "mvtnorm" )
nObs <- 1000
sigma <- matrix( c( 1, 0.5, 0.1, 0.5, 1, -0.3, 0.1, -0.3, 1 ), ncol = 3 )
errorTerms <- rmvnorm( nObs, c( 0, 0, 0 ), sigma )
myData <- data.frame( no = c( 1:nObs ), x1 = rnorm( nObs ), x2 = rnorm( nObs ),
   u1 = errorTerms[ , 1 ], u2 = errorTerms[ , 2 ], u3 = errorTerms[ , 3 ] )
myData$w <- 1 + myData$x1 + myData$u1
myData$y <- 2 + myData$w + myData$u2
myData$s <- ( 2 * myData$x1 + myData$x2 + myData$u3 - 0.2 ) > 0
myData$y[ !myData$s ] <- NA
myHeckit <- heckit( s ~ x1 + x2, y ~ w, data = myData )
summary( myHeckit )  # biased!
myHeckitIv <- heckit( s ~ x1 + x2, y ~ w, data = myData, inst = ~ x1 )
summary( myHeckitIv ) # unbiased

## tobit-5 example
N <- 500
   library(mvtnorm)
   vc <- diag(3)
   vc[lower.tri(vc)] <- c(0.9, 0.5, 0.6)
   vc[upper.tri(vc)] <- vc[lower.tri(vc)]
   eps <- rmvnorm(N, rep(0, 3), vc)
   xs <- runif(N)
   ys <- xs + eps[,1] > 0
   xo1 <- runif(N)
   yo1 <- xo1 + eps[,2]
   xo2 <- runif(N)
   yo2 <- xo2 + eps[,3]
   a <- selection(ys~xs, list(yo1 ~ xo1, yo2 ~ xo2))
   summary(a)

## tobit2 example
   vc <- diag(2)
   vc[2,1] <- vc[1,2] <- -0.7
   eps <- rmvnorm(N, rep(0, 2), vc)
   xs <- runif(N)
   ys <- xs + eps[,1] > 0
   xo <- runif(N)
   yo <- (xo + eps[,2])*(ys > 0)
   a <- selection(ys~xs, yo ~xo)
   summary(a)

## Example for treatment regressions
## Estimate the effect of treatment on income
## selection outcome: treatment participation, logical (treatment)
## selection explanatory variables: age, education (years)
##   unemployment in 1974, 1975, race
## outcome: log real income 1978
## outcome explanatory variables: treatment, age, education, race.
## unemployment variables are treated as exclusion restriction
data(Treatment, package="Ecdat")
a <- treatReg(treat~poly(age,2) + educ + u74 + u75 + ethn,
              log(re78)~treat + poly(age,2) + educ + ethn,
              data=Treatment)
print(summary(a))

Example output

Loading required package: maxLik
Loading required package: miscTools

Please cite the 'maxLik' package as:
Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.

If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
https://r-forge.r-project.org/projects/maxlik/
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
14 free parameters (df = 740)
Probit selection equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -4.157e+00  1.402e+00  -2.965 0.003127 ** 
age          1.854e-01  6.597e-02   2.810 0.005078 ** 
I(age^2)    -2.426e-03  7.735e-04  -3.136 0.001780 ** 
faminc       4.580e-06  4.206e-06   1.089 0.276544    
kidsTRUE    -4.490e-01  1.309e-01  -3.430 0.000638 ***
educ         9.818e-02  2.298e-02   4.272 2.19e-05 ***
Outcome equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.9712003  2.0593505  -0.472    0.637    
exper        0.0210610  0.0624646   0.337    0.736    
I(exper^2)   0.0001371  0.0018782   0.073    0.942    
educ         0.4170174  0.1002497   4.160 3.56e-05 ***
city         0.4438379  0.3158984   1.405    0.160    
Multiple R-Squared:0.1264,	Adjusted R-Squared:0.116
   Error terms:
              Estimate Std. Error t value Pr(>|t|)
invMillsRatio   -1.098      1.266  -0.867    0.386
sigma            3.200         NA      NA       NA
rho             -0.343         NA      NA       NA
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 5 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -1581.258 
753 observations (325 censored and 428 observed)
13 free parameters (df = 740)
Probit selection equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -4.120e+00  1.401e+00  -2.942 0.003368 ** 
age          1.840e-01  6.587e-02   2.794 0.005345 ** 
I(age^2)    -2.409e-03  7.723e-04  -3.119 0.001886 ** 
faminc       5.680e-06  4.416e-06   1.286 0.198782    
kidsTRUE    -4.506e-01  1.302e-01  -3.461 0.000568 ***
educ         9.528e-02  2.315e-02   4.115  4.3e-05 ***
Outcome equation:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.9630242  1.1982209  -1.638    0.102    
exper        0.0278683  0.0615514   0.453    0.651    
I(exper^2)  -0.0001039  0.0018388  -0.056    0.955    
educ         0.4570051  0.0732299   6.241 7.33e-10 ***
city         0.4465290  0.3159209   1.413    0.158    
   Error terms:
      Estimate Std. Error t value Pr(>|t|)    
sigma   3.1084     0.1138  27.307   <2e-16 ***
rho    -0.1320     0.1651  -0.799    0.424    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------
--------------------------------------------
Tobit 2 model with binary outcome (sample selection model)
Maximum Likelihood estimation
BHHH maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -653.2037 
753 observations (325 censored and 428 observed)
9 free parameters (df = 744)
Probit selection equation:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.430362   0.475966   0.904    0.366    
educ         0.156223   0.023811   6.561 1.00e-10 ***
age         -0.034713   0.007649  -4.538 6.61e-06 ***
kids5       -0.890560   0.112663  -7.905 9.69e-15 ***
kids618     -0.038167   0.039320  -0.971    0.332    
nwifeinc    -0.020948   0.004318  -4.851 1.49e-06 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -4.5213     0.5611  -8.058 3.08e-15 ***
educ          0.2879     0.0369   7.800 2.09e-14 ***
   Error terms:
    Estimate Std. Error t value Pr(>|t|)
rho   0.1164     0.2706    0.43    0.667
--------------------------------------------

Call:
lm(formula = y ~ x1, data = myData)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.17074 -0.64543 -0.03873  0.57432  2.28424 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.59142    0.05825   27.32   <2e-16 ***
x1           1.23876    0.05686   21.79   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8834 on 464 degrees of freedom
  (534 observations deleted due to missingness)
Multiple R-squared:  0.5057,	Adjusted R-squared:  0.5046 
F-statistic: 474.7 on 1 and 464 DF,  p-value: < 2.2e-16

Tobit 2 model
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
1000 observations (534 censored and 466 observed)
8 free parameters (df = 993)
Probit selection equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.23585    0.06271  -3.761 0.000179 ***
x1           2.14721    0.12650  16.974  < 2e-16 ***
x2           1.13917    0.08906  12.792  < 2e-16 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.09042    0.09157   22.83   <2e-16 ***
x1           0.91730    0.07365   12.45   <2e-16 ***
Multiple R-Squared:0.56,	Adjusted R-Squared:0.5581
   Error terms:
              Estimate Std. Error t value Pr(>|t|)    
invMillsRatio  -0.8430     0.1053  -8.004 3.35e-15 ***
sigma           0.9422         NA      NA       NA    
rho            -0.8947         NA      NA       NA    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
1000 observations (537 censored and 463 observed)
8 free parameters (df = 993)
Probit selection equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.18249    0.05951  -3.066  0.00223 ** 
x1           2.05944    0.12152  16.947  < 2e-16 ***
x2           0.91713    0.07861  11.666  < 2e-16 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.03962    0.08915   11.66   <2e-16 ***
w            1.42953    0.03609   39.61   <2e-16 ***
Multiple R-Squared:0.7861,	Adjusted R-Squared:0.7852
   Error terms:
              Estimate Std. Error t value Pr(>|t|)   
invMillsRatio  0.24587    0.09516   2.584  0.00992 **
sigma          0.87190         NA      NA       NA   
rho            0.28200         NA      NA       NA   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
1000 observations (537 censored and 463 observed)
8 free parameters (df = 993)
Probit selection equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.18249    0.05951  -3.066  0.00223 ** 
x1           2.05944    0.12152  16.947  < 2e-16 ***
x2           0.91713    0.07861  11.666  < 2e-16 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.63086    0.09495   17.18   <2e-16 ***
w            1.13645    0.03849   29.53   <2e-16 ***
Multiple R-Squared:0.7555,	Adjusted R-Squared:0.7544
   Error terms:
              Estimate Std. Error t value Pr(>|t|)
invMillsRatio -0.01126    0.10223   -0.11    0.912
sigma          0.92074         NA      NA       NA
rho           -0.01223         NA      NA       NA
--------------------------------------------
--------------------------------------------
Tobit 5 model (switching regression model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -894.8142 
500 observations: 158 selection 1 (FALSE) and 342 selection 2 (TRUE)
10 free parameters (df = 490)
Probit selection equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.07410    0.08906   0.832    0.406    
xs           0.88461    0.14145   6.254 8.74e-10 ***
Outcome equation 1:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.03602    0.17938   0.201    0.841    
xo1          1.06831    0.16801   6.359 4.66e-10 ***
Outcome equation 2:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.2229     0.1226  -1.818   0.0697 .  
xo2           0.9898     0.1654   5.983 4.22e-09 ***
   Error terms:
       Estimate Std. Error t value Pr(>|t|)    
sigma1  1.06558    0.10531  10.118  < 2e-16 ***
sigma2  1.08002    0.08407  12.846  < 2e-16 ***
rho1    0.92899    0.03397  27.348  < 2e-16 ***
rho2    0.81995    0.09766   8.396 5.01e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------
--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 5 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -735.544 
500 observations (163 censored and 337 observed)
6 free parameters (df = 494)
Probit selection equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.01765    0.11727   0.151     0.88    
xs           0.83856    0.20047   4.183 3.41e-05 ***
Outcome equation:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.0251     0.1618   0.155    0.877    
xo            0.8827     0.1612   5.474 6.99e-08 ***
   Error terms:
      Estimate Std. Error t value Pr(>|t|)    
sigma  0.93966    0.07971   11.79   <2e-16 ***
rho   -0.55189    0.22433   -2.46   0.0142 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------
--------------------------------------------
Tobit treatment model (switching regression model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 1: gradient close to zero
Log-Likelihood: -2651.502 
2344 observations: 2204 non-participants (selection FALSE) and 140 participants (selection TRUE)

17 free parameters (df = 2327)
Probit selection equation:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    -1.94272    0.38051  -5.106 3.57e-07 ***
poly(age, 2)1 -41.64058    7.63374  -5.455 5.42e-08 ***
poly(age, 2)2   2.65968    4.97762   0.534 0.593166    
educ           -0.13661    0.03207  -4.260 2.13e-05 ***
u74TRUE         0.79452    0.22374   3.551 0.000391 ***
u75TRUE         2.31494    0.21291  10.873  < 2e-16 ***
ethnblack       1.35300    0.18734   7.222 6.89e-13 ***
ethnhispanic    1.31932    0.29465   4.478 7.91e-06 ***
Outcome equation:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    8.983926   0.069341 129.561  < 2e-16 ***
treatTRUE     -0.963132   0.075837 -12.700  < 2e-16 ***
poly(age, 2)1  6.512273   0.797670   8.164 5.25e-16 ***
poly(age, 2)2 -4.428831   0.773235  -5.728 1.15e-08 ***
educ           0.080227   0.005231  15.338  < 2e-16 ***
ethnblack     -0.256112   0.035865  -7.141 1.23e-12 ***
ethnhispanic  -0.007786   0.079273  -0.098    0.922    
   Error terms:
      Estimate Std. Error t value Pr(>|t|)    
sigma  0.69304    0.01014  68.359  < 2e-16 ***
rho    0.17699    0.06502   2.722  0.00654 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--------------------------------------------

sampleSelection documentation built on Jan. 13, 2021, 7:49 p.m.