R/methods.R

Defines functions plot.BGLR predict.BGLR residuals.BGLR summary.BGLR

Documented in plot.BGLR predict.BGLR residuals.BGLR summary.BGLR

# file BGLR/methods.R
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 or 3 of the License
#  (at your option).
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/

#BGLR: A Statistical Package for Whole-Genome Regression & Prediction
#Authors: Gustavo de los Campos & Paulino Perez Rodriguez
#Birmingaham, Alabama, 2013, 2014

summary.BGLR=function(object,...)
{
    
    if(!inherits(object, "BGLR")) stop("This function only works for objects of class `BGLR'")
    
    tmp<-paste('--------------------> Summary of data & model <--------------------')
    cat(tmp,'\n\n')

    tmp<-paste(' Number of phenotypes=', sum(!is.na(object$y)))
    cat(tmp,'\n')

    cat(' Min (TRN)= ', min(object$y,na.rm=TRUE),'\n')
    cat(' Max (TRN)= ', max(object$y,na.rm=TRUE),'\n')
    cat(' Variance of phenotypes (TRN)=', round(var(object$y,na.rm=TRUE),4),'\n') 
    cat(' Residual variance=',round(object$varE,4),'\n')

    n<-length(object$y)

    if(any(is.na(object$y)))
    {     
     		tst<-which(is.na(object$y))

     		cat(' N-TRN=',n-length(tst), ' N-TST=',length(tst),'\n')
     
     		cat(' Correlation TRN=',round(cor(object$y[-tst],object$yHat[-tst]),4),'\n')

   }else{
       cat(' N-TRN=',n,'  N-TST=0', '\n\n')
   }
  
   cat('\n')
   cat(' -- Linear Predictor -- \n')
   cat('\n')
   cat(' Intercept included by default\n')
   
   for(k in 1:length(object$ETA))
   {
        if(object$ETA[[k]]$model=="FIXED")
	{
	    if(!is.null(names(object$ETA)[k])){
		   cat(" Coefficientes in ETA[",k,"] (",names(object$ETA)[k],") were asigned a flat prior\n")
		}else{
		   cat(" Coefficientes in ETA[",k,"] (no-name) are asigned a flat prior\n")
		}
	}else{
		if(object$ETA[[k]]$model=="RKHS")
		{

			if(!is.null(names(object$ETA)[k])){
				cat(" Coefficientes in ETA[",k,"] (",names(object$ETA)[k],") were assumed to be normally distributed with zero mean and \n covariance (or its eigendecoposition) provided by user \n")
			}else{
				cat(" Coefficientes in ETA[",k,"] (no-name) were assumed to be normally distributed with zero mean and \n covariance (or its eigendecoposition) provided by user \n")
			}
		}else{
			if(!is.null(names(object$ETA)[k])){
				cat(" Coefficientes in ETA[",k,"] (",names(object$ETA)[k],") modeled as in ", object$ETA[[k]]$model,"\n")
			}else{
				cat(" Coefficientes in ETA[",k,"] (no-name) modeled as in ", object$ETA[[k]]$model,"\n")
			}		
		}
	}
   } 

   cat('\n------------------------------------------------------------------\n');	
}

residuals.BGLR=function(object,...)
{
    if(!inherits(object, "BGLR")) stop("This function only works for objects of class `BGLR'")
	object$y-object$yHat
}

predict.BGLR=function(object,newdata,...)
{
    if (!inherits(object, "BGLR")) stop("This function only works for objects of class `BGLR'")
	object$yHat
}

#effects.BGLR=function(object,...)
#{
#    if(!inherits(object, "BGLR")) stop("This function only works for objects of class `BGLR'")
#    object$ETA	
#}


plot.BGLR=function(x,...)
{
  ### Check that object is compatible
  if(!inherits(x, "BGLR")) stop("This function only works for objects of class `BGLR'")
  
  limits<-range(c(x$y,x$yHat),na.rm=TRUE)
  plot(x$y,x$yHat,main="Training",xlim=limits,ylim=limits,xlab='Response',ylab='Prediction'); 
  abline(a=0,b=1,lty=3)
}

Try the BGLR package in your browser

Any scripts or data that you put into this service are public.

BGLR documentation built on May 31, 2017, 5:14 a.m.