Nothing
##' Using the classical t test statistic for a one- or two-sample design, this
##' function computes the corresponding Bayes factor test.
##'
##' This function can be used to compute the Bayes factor corresponding to a
##' one-sample, a paired-sample, or an independent-groups t test, using the
##' classical t statistic. It can be used when you don't have access to the
##' full data set for analysis by \code{\link{ttestBF}}, but you do have the
##' test statistic.
##'
##' For details about the model, see the help for \code{\link{ttestBF}}, and the
##' references therein.
##'
##' The Bayes factor is computed via Gaussian quadrature.
##' @title Use t statistic to compute Bayes factor for one- and two- sample designs
##' @param t classical t statistic
##' @param n1 size of first group (or only group, for one-sample tests)
##' @param n2 size of second group, for independent-groups tests
##' @param nullInterval optional vector of length 2 containing lower and upper bounds of an interval hypothesis to test, in standardized units
##' @param rscale numeric prior scale
##' @return If \code{nullInterval} is defined, then two Bayes factors will be
##' computed: The Bayes factor for the interval against the null hypothesis
##' that the standardized effect is 0, and the corresponding Bayes factor for
##' the compliment of the interval. For each Bayes factor, a vector of length
##' 2 containing the computed log(e) Bayes factor (against the point null),
##' along with a proportional error estimate on the Bayes factor is returned.
##' @author Richard D. Morey (\email{richarddmorey@@gmail.com}) and Jeffrey N.
##' Rouder (\email{rouderj@@missouri.edu})
##' @keywords htest
##' @export
##' @references Morey, R. D. & Rouder, J. N. (2011). Bayes Factor Approaches for
##' Testing Interval Null Hypotheses. Psychological Methods, 16, 406-419
##'
##' Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
##' (2009). Bayesian t-tests for accepting and rejecting the null hypothesis.
##' Psychonomic Bulletin & Review, 16, 752-760
##' @seealso \code{\link{integrate}}, \code{\link{t.test}}; see
##' \code{\link{ttestBF}} for the intended interface to this function, using
##' the full data set.
##' @examples
##' ## Classical example: Student's sleep data
##' data(sleep)
##' plot(extra ~ group, data = sleep)
##'
##' ## t.test() gives a t value of -4.0621
##' t.test(extra ~ group, data = sleep, paired=TRUE)
##' ## Gives a Bayes factor of about 17
##' ## in favor of the alternative hypothesis
##' result <- ttest.tstat(t = -4.0621, n1 = 10)
##' exp(result[['bf']])
ttest.tstat=function(t,n1,n2=0,nullInterval=NULL,rscale="medium")
{
if(n2){
rscale = rpriorValues("ttestTwo",,rscale)
}else{
rscale = rpriorValues("ttestOne",,rscale)
}
nu=ifelse(n2==0 | is.null(n2),n1-1,n1+n2-2)
n=ifelse(n2==0 | is.null(n2),n1,(n1*n2)/(n1+n2))
r2=rscale^2
marg.like.0=(1+t^2/(nu))^(-(nu+1)/2)
if(is.null(nullInterval)){
integral = integrate(t.joint,lower=0,upper=Inf,t=t,n=n,nu=nu,r2=r2)
marg.like.1 = integral$value
prop.error = integral$abs.error / marg.like.1
lbf = log(marg.like.1) - log(marg.like.0)
}else{
areabf = ttestAreaNull(t, n1, n2, nullInterval=nullInterval, rscale=rscale)
lbf = areabf$bf
prop.error = areabf$properror
}
return(list(bf = lbf, properror=prop.error))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.