R/cohort.R

Defines functions merge.cohort subset.cohort truncateChar summary.cohort print.cohort is.cohort as.cohort cohort

Documented in as.cohort cohort is.cohort merge.cohort print.cohort subset.cohort summary.cohort

# New S3 object type for cohort - one row per patient
# Alphabetical column order

cohort <- function(x, idcolname = c('patid', 'anonpatid', 'id'),
	description = NULL){
	# Designates a data.table as a 'cohort'
	# Creates a data dictionary
	# Data.tables are not copied
	if (is.cohort(x)){
		out <- x
	} else if (is.data.table(x)){
		out <- x
	} else if (is.ffdf(x)){
		out <- x
		setattr(out, 'class', c('cohort', class(out)))
	} else {
		out <- as.data.table(as.data.frame(x))
	}

	# Find ID column
	if (is.null(attr(x, 'idcolname'))){
		idcolname <- idcolname[which(idcolname %in% colnames(out))]
	} else {
		idcolname <- as.character(attr(x, 'idcolname'))
	}
	names(idcolname) <- NULL
	if (length(idcolname) == 1){
		setattr(out, 'idcolname', idcolname)
	} else if (length(idcolname) > 1){
		stop('Multiple potential ID columns, please specify')
	} else {
		stop('Invalid ID column name')
	}
	if (any(is.na(out[[idcolname]]))){
		stop('ID may not be missing')
	}
	if (length(unique(out[[idcolname]])) < nrow(out)){
		stop('ID must be unique')
	}

	if (is.null(description)){
		if (!is.null(attr(x, 'var.labels'))){
			if (length(attr(x, 'var.labels')) == ncol(x)){
				description <- data.frame(colname = colnames(x),
					description = attr(x, 'var.labels'),
					stringsAsFactors = FALSE)
			}
		}
	}

	if (is.null(description)){
		description <- attr(x, 'description')
	}

	if (is.null(description)){
		description <- data.frame(colname = setdiff(colnames(x), idcolname),
			description = '', stringsAsFactors = FALSE)
	} else {
		description <- data.frame(description)
		if (!identical(colnames(description), c('colname', 'description'))){
			stop('Description table must have two columns: colname and description')
		}
	}
	# Keep only the entries in description that are relevant to this cohort
	description <- description[description$colname %in% colnames(x), ]
	description <- description[order(description$colname), ]

	# Change the class to cohort
	if (!('cohort' %in% class(out))){
		setattr(out, 'class', c('cohort', class(out)))
	}
	
	# Set column order to be alphabetical (only works for data.tables)
	if (is.data.table(out)){
		setcolorder(out, c(idcolname, sort(setdiff(names(out), idcolname))))
		setkeyv(out, idcolname)
	}
	setattr(out, 'description', description)
	out
}

as.cohort <- function(x, ...){
	if (is.cohort(x)){
		x
	} else {
		cohort(x, ...)
	}
}

is.cohort <- function(x){
	if ('cohort' %in% class(x)){
		if (is.null(attr(x, 'idcolname'))){
			# If there is no ID column it is not a cohort
			setattr(x, 'class', setdiff(class(x), 'cohort'))
			FALSE
		} else {
			if (attr(x, 'idcolname') %in% colnames(x)){
				TRUE
			} else {
				# If the ID column is not included it is not a cohort
				setattr(x, 'class', setdiff(class(x), 'cohort'))
				FALSE
			}
		}
	} else {
		FALSE
	}
}

print.cohort <- function(x, ...){
	if (!(is.cohort(x))){
		# Remove cohort class designation
		setattr(x, 'class', setdiff(class(x), 'cohort'))
		print(x)
	} else {		
		# Prints the summary and then the cohort file itself
		summary.cohort(x)	

		cat('\nDATA\n')
		if (is.data.table(x)){
			# Changing the class to data.table in order to invoke
			# print.data.table
			classes <- class(x)
			setattr(x, 'class', c('data.table', 'data.frame'))
			print(x)
			# Restore original classes
			setattr(x, 'class', classes)
		} else if (is.ffdf(x)){
			ff::print.ffdf(x)
		}
	}
}

summary.cohort <- function(object, ...){
	if (!(is.cohort(object))){
		# Remove cohort class designation
		setattr(object, 'class', setdiff(class(object), 'cohort'))
		summary(object)
	} else {
		# Prints a summary of a cohort
		if (is.data.table(object)){
			# Order the columns so that ID column is at the
			# front and others are alphabetical
			setcolorder(object, c(attr(object, 'idcolname'),
				sort(setdiff(names(object), attr(object, 'idcolname')))))
			cat('Data.table cohort with ') 
		} else if (is.ffdf(object)) {
			cat('FFDF cohort with ')
		}
		cat(nrow(object), 'patients and ' %&% ncol(object) %&%
			' columns; ID column =', attr(object, 'idcolname'), '\n')

		getclass <- function(colnames){
			# Get the class of columns in a data.frame, returning
			# NULL if the column does not exist
			trygetclass <- function(z){
				if (z %in% colnames(object)){
					class(object[[z]])[1]
				} else {
					'NULL'
				}
			}
			sapply(colnames, trygetclass)
		}

		description <- attr(object, 'description')
		
		if (!is.null(description)){
			if (nrow(description) > 0){
				cat('\nCOLUMN DESCRIPTIONS\n')
				# Add columns without a description
				description <- merge(description,
					data.frame(colname = colnames(object)), by = 'colname',
					all = TRUE)
				description$description[is.na(description$description)] <- ''
				
				if (is.ffdf(object)){
					object <- as.data.table(as.data.frame(object[1, ]))
				}

				cat(paste(description$colname %&% ' (' %&%
					getclass(description$colname) %&% '): ' %&%
					truncateChar(description$description,
					getOption('width') - nchar(description$colname) -
					nchar(getclass(description$colname)) - 7), collapse='\n'))
				cat('\n')
			}
		}
	}
}

truncateChar <- function(x, maxchar){
	# Truncates a character vector so that each element does not have more
	# than a specified number of characters, adding ... to the end of 
	# truncated terms
	# Arguments: x - character string to truncate
	#            maxchar - length to truncate to
	
	# Ensure maxchar is a vector of the same length as x
	maxchar <- maxchar + rep(0, length(x))

	# Split into individual lines
	for (i in 1:length(x)){
		xlines <- strsplit(x[i], '\n')[[1]]
		if (length(xlines) > 1){
			nindent <- min(nchar(strsplit(xlines[1], ':')[[1]][1]) + 2,
				getOption('width') - 20)
			xlines[2:length(xlines)] <- paste(rep(' ', nindent),
				collapse = '') %&% xlines[2:length(xlines)]
		}
		convert <- nchar(xlines) > maxchar[i]
		xlines[convert] <- substr(xlines[convert], 1, maxchar[i] - 3) %&% '...'
		x[i] <- paste(xlines, collapse = '\n')[1]
	}
	x
}

subset.cohort <- function(x, subset, select){
	# S3 method for subsetting a cohort
	# Arguments: x - cohort
	#            subset - a logical expression for rows to keep,
	#                   default is to keep all rows.
	#            select - a character vector of columns to keep,
	#                   default is to keep all columns.
	#                   The ID column is always kept.
	
	# Ensure that as a minimum, code, medcode if GPRD,
	# term and category are kept. It is only valid as a codelist
	# if these columns are kept test
	if (!is.cohort(x)){
		setattr(x, 'class', setdiff(class(x), 'cohort'))		
		subset(x, subset, select)
	} else {
		if (missing(select)){
			select <- colnames(x)
		} else {
			select <- c(attr(x, 'idcolname'),
				sort(unique(setdiff(select, attr(x, 'idcolname')))))
		}
		
		if (is.data.table(x)){
			if (missing(subset)) {
				includeRow <- TRUE
			}	else {
				expr <- substitute(subset)
				includeRow <- eval(expr, x, parent.frame())
				if (!is.logical(includeRow)) 
					stop("'subset' must evaluate to a Boolean vector")
				includeRow[is.na(includeRow)] <- FALSE
			}
			out <- x[includeRow, select, with = FALSE]
		} else if (is.ffdf(x)){
			# subset.ffdf does not use ...
			out <- ffbase::subset.ffdf(x, subset)
			# If using the select argument, need to select the relevant
			# vectors by setting the others to NULL
			if (!missing(select)){
				if (is.logical(select) | is.numeric(select)){
					select <- colnames(out)[select]
				} 
				if (is.character(select) & length(select) > 0){
					# Remove unwanted columns
					remove <- setdiff(colnames(out), select)
					for (thecol in remove){
						out[[thecol]] <- NULL
					}
				}
			}
		}
		out <- cohort(out, idcolname = attr(x, 'idcolname'),
			description = attr(x, 'description')) 
		out <- purgeDescription(out)
		out
	}
}


merge.cohort <- function(x, y, by = attr(x, 'idcolname'), ...){
	# Merges two cohorts, warning if there are common columns
	# The ID column name must be identical
	# Combines the descriptions
	
	if (!is.cohort(x)){
		setattr(x, 'class', setdiff(class(x), 'cohort'))
		merge(x, y, by, ...)
	} else {
		
		if (is.cohort(x) & is.cohort(y)){
			if (attr(x, 'idcolname') != attr(y, 'idcolname')){
				stop('ID column names in x and y are different')
			}
		}
		
		# If one of the objects is a data.table, the other is converted
		# t oa data.table before merging
		if (is.data.table(x) & !is.data.table(y)){
			y <- as.data.table(y)
		}
		if (is.data.table(y) & !is.data.table(x)){
			x <- as.data.table(x)
		}

		if (length(intersect(colnames(x), colnames(y))) > 1){
			warning('Columns ' %&%
				paste(intersect(colnames(x), colnames(y)), collapse=', ') %&%
				' are in both cohort datasets')
		}

		classx <- class(x)
		classy <- class(y)

		# Simplify the classes to select the correct merge method
		if (is.ffdf(x) & is.ffdf(y)){
			setattr(x, 'class', 'ffdf')
			setattr(y, 'class', 'ffdf')
		}
		if (is.data.table(x) & is.data.table(y)) {
			setattr(x, 'class', c('data.table', 'data.frame'))
			setattr(y, 'class', c('data.table', 'data.frame'))
		}
		
		# Perform the merge
		out <- merge(x, y, by = by, ...)
		
		# Restore original classes
		setattr(x, 'class', classx)
		setattr(y, 'class', classy)
		
		out <- cohort(out, idcolname = attr(x, 'idcolname'),
			description <- rbind(attr(x, 'description'), attr(y, 'description')))
		out
	}
}

Try the CALIBERdatamanage package in your browser

Any scripts or data that you put into this service are public.

CALIBERdatamanage documentation built on May 31, 2017, 3:41 a.m.