Description Usage Arguments Value Author(s) References See Also Examples
print, summary, and xtable methods for
sienaFit objects.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## S3 method for class 'sienaFit'
print(x, tstat=TRUE, ...)
## S3 method for class 'sienaFit'
summary(object, ...)
## S3 method for class 'summary.sienaFit'
print(x, matrices=TRUE, ...)
## S3 method for class 'sienaFit'
xtable(x, caption = NULL, label = NULL, align = NULL,
digits = NULL, display = NULL, ...)
siena.table(x, type="tex", file=paste(deparse(substitute(x)), ".", type,sep=""),
vertLine=TRUE, tstatPrint=FALSE, sig=FALSE, d=3, nfirst=NULL)
|
object |
An object of class |
x |
An object of class |
matrices |
Boolean: whether also to print in the summary the covariance matrix of the estimates, the derivative matrix of expected statistics X by parameters, and the covariance matrix of the statistics. |
tstat |
Boolean: if this is NULL, the t-statistics for convergence will not be added to the report. |
type |
Type of output to produce; must be either |
file |
Name of the file; defaults to the name of the |
vertLine |
Boolean: add vertical lines separating the columns in
|
tstatPrint |
Boolean: add a column of significance t values (parameter
estimate/standard error estimate) to |
sig |
Boolean: adds symbols (daggers and asterisks) indicating
significance levels for the parameter estimates to |
d |
The number of decimals places used in |
caption |
See documentation for |
label |
See documentation for |
align |
See documentation for |
digits |
See documentation for |
display |
See documentation for |
nfirst |
Only relevant for the |
... |
Add extra parameters for |
The function print.sienaFit prints a table containing estimated
parameter values, standard errors and (optionally)
t-statistics for convergence.
The function summary.sienaFit prints a table containing
estimated parameter values, standard errors and t-statistics for
convergence together with the covariance matrix of the estimates, the
derivative matrix of expected statistics X by parameters, and the
covariance matrix of the expected statistics X.
The function xtable.sienaFit creates an object of class
xtable.sienaFit which inherits from class xtable and
passes an extra arguments to the print.xtable.
The function siena.table outputs a latex or html table of
the estimates and standards errors of a sienaFit object.
The table will be written to a file in the current directory and
has a footnote reporting the maximum of the convergence t-ratios.
See the manual for how to import these tables easily into MS-Word.
Ruth Ripley, Charlotte Greenan, Tom Snijders
See http://www.stats.ox.ac.uk/~snijders/siena/
1 2 3 4 5 6 7 8 9 10 11 12 | myalgorithm <- sienaAlgorithmCreate(nsub=2, n3=100, projname=NULL)
mynet1 <- sienaDependent(array(c(tmp3, tmp4), dim=c(32, 32, 2)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
ans <- siena07(myalgorithm, data=mydata, effects=myeff, batch=TRUE)
ans
summary(ans)
## Not run:
xtable(ans, type="html", file="ans.html")
siena.table(ans, type="html", tstat=TRUE, d=2)
## End(Not run)
|
Warning message:
no DISPLAY variable so Tk is not available
Start phase 0
theta: -0.56 0.00
Start phase 1
Phase 1 Iteration 1 Progress: 0%
Phase 1 Iteration 2 Progress: 0%
Phase 1 Iteration 3 Progress: 0%
Phase 1 Iteration 4 Progress: 1%
Phase 1 Iteration 5 Progress: 1%
Phase 1 Iteration 10 Progress: 1%
Phase 1 Iteration 15 Progress: 2%
Phase 1 Iteration 20 Progress: 3%
Phase 1 Iteration 25 Progress: 3%
Phase 1 Iteration 30 Progress: 4%
Phase 1 Iteration 35 Progress: 5%
Phase 1 Iteration 40 Progress: 6%
Phase 1 Iteration 45 Progress: 6%
Phase 1 Iteration 50 Progress: 7%
theta: -0.728 0.462
Start phase 2.1
Phase 2 Subphase 1 Iteration 1 Progress: 21%
Phase 2 Subphase 1 Iteration 2 Progress: 21%
theta -0.858 0.885
ac 0.602 1.307
Phase 2 Subphase 1 Iteration 3 Progress: 21%
Phase 2 Subphase 1 Iteration 4 Progress: 21%
theta -1.12 1.66
ac 0.664 1.314
Phase 2 Subphase 1 Iteration 5 Progress: 21%
Phase 2 Subphase 1 Iteration 6 Progress: 21%
theta -1.25 2.01
ac 0.667 1.162
Phase 2 Subphase 1 Iteration 7 Progress: 22%
Phase 2 Subphase 1 Iteration 8 Progress: 22%
theta -1.30 2.17
ac 0.647 1.152
Phase 2 Subphase 1 Iteration 9 Progress: 22%
Phase 2 Subphase 1 Iteration 10 Progress: 22%
theta -1.31 2.18
ac 0.318 1.155
theta -1.14 1.79
ac 0.0658 -0.1161
theta: -1.14 1.79
Start phase 2.2
Phase 2 Subphase 2 Iteration 1 Progress: 51%
Phase 2 Subphase 2 Iteration 2 Progress: 51%
Phase 2 Subphase 2 Iteration 3 Progress: 52%
Phase 2 Subphase 2 Iteration 4 Progress: 52%
Phase 2 Subphase 2 Iteration 5 Progress: 52%
Phase 2 Subphase 2 Iteration 6 Progress: 52%
Phase 2 Subphase 2 Iteration 7 Progress: 52%
Phase 2 Subphase 2 Iteration 8 Progress: 52%
Phase 2 Subphase 2 Iteration 9 Progress: 52%
Phase 2 Subphase 2 Iteration 10 Progress: 53%
theta -1.12 1.73
ac -0.023 -0.275
theta: -1.12 1.73
Start phase 3
Estimates, standard errors and convergence t-ratios
Estimate Standard Convergence
Error t-ratio
Rate parameters:
0 Rate parameter 2.9954 ( 0.4779 )
1. eval outdegree (density) -1.1172 ( 0.2005 ) 0.1580
2. eval reciprocity 1.7320 ( 0.4091 ) -0.1804
Overall maximum convergence ratio: 0.3606
Total of 427 iteration steps.
Estimates, standard errors and convergence t-ratios
Estimate Standard Convergence
Error t-ratio
Rate parameters:
0 Rate parameter 2.9954 ( 0.4779 )
1. eval outdegree (density) -1.1172 ( 0.2005 ) 0.1580
2. eval reciprocity 1.7320 ( 0.4091 ) -0.1804
Overall maximum convergence ratio: 0.3606
Total of 427 iteration steps.
Covariance matrix of estimates (correlations below diagonal)
0.040 -0.049
-0.599 0.167
Derivative matrix of expected statistics X by parameters:
39.897 16.909
13.646 18.008
Covariance matrix of X (correlations below diagonal):
41.656 21.598
0.559 35.832
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.