Functions to plot FLIM results.

Description

Functions to plot FLIM results.

Usage

1
2
3
4
5
6
7
8
    plotHistAmp(multimodel, t, i=1)
    plotHistNormComp(multimodel, t, i=1)
    plotIntenImage(multimodel, t, i=1,  tit=c("Intensity Image"))
    plotSelIntenImage(multimodel, t, i=1, tit=c("Region of Interest"),
     cex=1)
    plotTau(multimodel, t, i=1, tit=" < tau > ", plotoptions=kinopt(),
     lifetimes=TRUE)
    plotNormComp(multimodel, t, i=1)

Arguments

multimodel

the currModel element of the list returned by fitModel

t

the currTheta element of the list returned by fitModel

i

dataset index to make plot for

tit

Character vector giving the title

plotoptions

object of class kinopt giving the plotting options

cex

A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default

lifetimes

A logical value indicating whether the averages per-pixel should be for lifetimes or their inverse, decay rates.

Author(s)

Katharine M. Mullen, Sergey Laptenok, Ivo H. M. van Stokkum

See Also

fitModel

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
## Not run:  
##############################
## READ IN DATA,  PREPROCESS DATA
##############################

## data representing only donor tagged

data("donorTagged")

D1 <- preProcess(c001, sel_time=c(25,230))
D2 <- preProcess(c003, sel_time=c(25,230))

## data representing donor-acceptor tagged

data("donorAcceptorTagged")

DA1 <- preProcess(cy005c, sel_time=c(25,230))
DA2 <- preProcess(cy006, sel_time=c(25,230))

##############################
## READ IN MEASURED IRF,  PREPROCESS IRF
##############################

data("mea_IRF")
mea_IRF <- baseIRF(mea_IRF, 100, 150)[25:230] 

##############################
## SPECIFY INITIAL MODEL
##############################

modelC <- initModel(mod_type = "kin", 
## starting values for decays 
kinpar=c(1.52, 0.36),
## numerical convolution algorithm to use                     
convalg = 2,
## measured IRF                    
measured_irf = mea_IRF,
## shift of the irf is fixed
parmu = list(0), fixed = list(parmu=1),
## one component represents a pulse-following with the IRF shape
cohspec = list(type = "irf"),
## parallel kinetics                     
seqmod=FALSE,
## decay parameters are non-negative 
positivepar=c("kinpar"),
title="Global CFP bi-exp model with pulse-follower")

##############################
## FIT MODEL FOR DONOR ONLY DATA
##############################

fitD <- fitModel(list(D1,D2),
                 list(modelC),
                 ## estimate the linear coeefficients per-dataset
                 modeldiffs = list(linkclp=list(1,2)),
                 opt=kinopt(iter=1, linrange = 10,
                   addfilename = TRUE,
                   output = "pdf",
                   makeps = "globalD",
                   notraces = TRUE,
                   selectedtraces = seq(1, length(c001@x2), by=11),
                   summaryplotcol = 4, summaryplotrow = 4, 
                   ylimspec = c(1, 2.5),
                   xlab = "time (ns)", ylab = "pixel number", 
                   FLIM=TRUE))

##############################
## FIT MODEL FOR DONOR-ACCEPTOR DATA
##############################

fitDA <- fitModel(list(DA1,DA2),
                  list(modelC),
                  ## estimate the linear coeefficients per-dataset
                 modeldiffs = list(linkclp=list(1,2)),
                 opt=kinopt(iter=1, linrange = 10,
                   addfilename = TRUE,
                   output = "pdf",
                   makeps = "globalDA",
                   notraces = TRUE,
                   selectedtraces = seq(1, length(c001@x2), by=11),
                   summaryplotcol = 4, summaryplotrow = 4, 
                   ylimspec = c(1, 2.5),
                   xlab = "time (ns)", ylab = "pixel number", 
                   FLIM=TRUE))

##############################
## COMPARE THE DECAY RATES 
##############################

parEst(fitD)

parEst(fitDA) 

##############################
## ADDITIONAL FIGURES 
##############################

par(mfrow=c(2,2), mar=c(1,3,1,12))

par(cex=1.5)
plotIntenImage(fitD$currModel, fitD$currTheta, 1, tit="")

par(cex=1.5)
plotIntenImage(fitDA$currModel, fitD$currTheta, 1, tit="")

par(cex=1.5)
plotIntenImage(fitD$currModel, fitD$currTheta, 2, tit="")

par(cex=1.5)
plotIntenImage(fitDA$currModel, fitD$currTheta, 2, tit="")

###############

plo <- kinopt(ylimspec = c(.25,1.1), imagepal=grey(seq(1,0,length=100)))

par(mfrow=c(2,2), mar=c(1,3,1,12))

par(cex=1.5)
plotTau(fitD$currModel, fitD$currTheta, 1, tit="",plotoptions=plo,
        lifetimes=FALSE)

par(cex=1.5)
plotTau(fitDA$currModel, fitD$currTheta, 1, tit="",plotoptions=plo,
        lifetimes=FALSE)

par(cex=1.5)
plotTau(fitD$currModel, fitD$currTheta, 2, tit="",plotoptions=plo,
        lifetimes=FALSE)

par(cex=1.5)
plotTau(fitDA$currModel, fitD$currTheta, 2, tit="", plotoptions=plo,
        lifetimes=FALSE)


## End(Not run)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.