R/lincon.R

lincon <- function(formula, data, tr = 0.2){
  #
 
  con=0
  alpha=.05
  pr=TRUE
  crit=NA
  KB=FALSE
  
  if (missing(data)) {
    mf <- model.frame(formula)
  } else {
    mf <- model.frame(formula, data)
  }
  cl <- match.call()
  
  x <- split(model.extract(mf, "response"), mf[,2])   
  
  if(tr==.5)stop("Use the R function medpb to compare medians")
  if(is.data.frame(x))x=as.matrix(x)
  flag<-T
  if(alpha!= .05 && alpha!=.01)flag<-F
  if(is.matrix(x))x<-listm(x)
  if(!is.list(x))stop("Data must be stored in a matrix or in list mode.")
  
  con<-as.matrix(con)
  J<-length(x)
  sam=NA
  h<-vector("numeric",J)
  w<-vector("numeric",J)
  xbar<-vector("numeric",J)
  for(j in 1:J){
    xx<-!is.na(x[[j]])
    val<-x[[j]]
    x[[j]]<-val[xx]  # Remove missing values
    sam[j]=length(x[[j]])
    h[j]<-length(x[[j]])-2*floor(tr*length(x[[j]])) # h is the number of observations in the jth group after trimming.
    w[j]<-((length(x[[j]])-1)*winvar(x[[j]],tr))/(h[j]*(h[j]-1))
    xbar[j]<-mean(x[[j]],tr)
  }
  if(sum(con^2)==0){
    CC<-(J^2-J)/2
    if(CC>28)print("For faster execution time but less power, use kbcon")
    psihat<-matrix(0,CC,6)
    dimnames(psihat)<-list(NULL,c("Group","Group","psihat","ci.lower","ci.upper","p.value"))
    test<-matrix(NA,CC,6)
    dimnames(test)<-list(NULL,c("Group","Group","test","crit","se","df"))
    jcom<-0
    for (j in 1:J){
      for (k in 1:J){
        if (j < k){
          jcom<-jcom+1
          test[jcom,3]<-abs(xbar[j]-xbar[k])/sqrt(w[j]+w[k])
          sejk<-sqrt(w[j]+w[k])
          test[jcom,5]<-sejk
          psihat[jcom,1]<-j
          psihat[jcom,2]<-k
          test[jcom,1]<-j
          test[jcom,2]<-k
          psihat[jcom,3]<-(xbar[j]-xbar[k])
          df<-(w[j]+w[k])^2/(w[j]^2/(h[j]-1)+w[k]^2/(h[k]-1))
          test[jcom,6]<-df
          psihat[jcom,6]<-2*(1-pt(test[jcom,3],df))
          if(!KB){
            if(CC>28)flag=F
            if(flag){
              if(alpha==.05)crit<-smmcrit(df,CC)
              if(alpha==.01)crit<-smmcrit01(df,CC)
            }
            if(!flag || CC>28)crit<-smmvalv2(dfvec=rep(df,CC),alpha=alpha)
          }
          if(KB)crit<-sqrt((J-1)*(1+(J-2)/df)*qf(1-alpha,J-1,df))
          test[jcom,4]<-crit
          psihat[jcom,4]<-(xbar[j]-xbar[k])-crit*sejk
          psihat[jcom,5]<-(xbar[j]-xbar[k])+crit*sejk
        }}}}
  if(sum(con^2)>0){
    if(nrow(con)!=length(x)){
      stop("The number of groups does not match the number of contrast coefficients.")
    }
    psihat<-matrix(0,ncol(con),5)
    dimnames(psihat)<-list(NULL,c("con.num","psihat","ci.lower","ci.upper",
                                  "p.value"))
    test<-matrix(0,ncol(con),5)
    dimnames(test)<-list(NULL,c("con.num","test","crit","se","df"))
    df<-0
    for (d in 1:ncol(con)){
      psihat[d,1]<-d
      psihat[d,2]<-sum(con[,d]*xbar)
      sejk<-sqrt(sum(con[,d]^2*w))
      test[d,1]<-d
      test[d,2]<-sum(con[,d]*xbar)/sejk
      df<-(sum(con[,d]^2*w))^2/sum(con[,d]^4*w^2/(h-1))
      if(flag){
        if(alpha==.05)crit<-smmcrit(df,ncol(con))
        if(alpha==.01)crit<-smmcrit01(df,ncol(con))
      }
      if(!flag)crit<-smmvalv2(dfvec=rep(df,ncol(con)),alpha=alpha)
      test[d,3]<-crit
      test[d,4]<-sejk
      test[d,5]<-df
      psihat[d,3]<-psihat[d,2]-crit*sejk
      psihat[d,4]<-psihat[d,2]+crit*sejk
      psihat[d,5]<-2*(1-pt(abs(test[d,2]),df))
    }
  }
  
  psihat[, 6] <- p.adjust(psihat[,6], method = 'hochberg')
  
  #fnames <- as.character(unique(mf[,2]))
  fnames <- names(x)
  result <- list(comp = psihat, fnames = fnames, call = cl)
  class(result) <- "mcp1"
  result
}

Try the WRS2 package in your browser

Any scripts or data that you put into this service are public.

WRS2 documentation built on May 2, 2019, 4:46 p.m.