Nothing
dcEvaluate <- function(p, a, reference, lonlat=TRUE, binsize=15, predp, preda, model, predictors, fun=predict) {
if (missing(predp)) {
p <- stats::na.omit(p)
a <- stats::na.omit(a)
} else {
i <- is.na(p)
if (any(i)) {
p <- p[!i,]
predp <- predp[!i,]
}
i <- is.na(a)
if (any(i)) {
a <- a[!i,]
preda <- preda[!i,]
}
}
reference <- stats::na.omit(reference)
dp <- apply(pointDistance(p, reference, longlat=lonlat), 1, min) / 1000
da <- apply(pointDistance(a, reference, longlat=lonlat), 1, min) / 1000
#if (is.null(dist)) {
# dist <- c(0, as.vector(quantile(dp, probs=0:10/10)))
#} else {
# if (length(dist) == 1) {
# n <- max(1, max(da) / dist)
# dist <- 0:n * dist
# }
#}
n <- round(length(dp) / binsize)
dist <- c(0, as.vector(quantile(dp, probs=0:n/n)))
if (missing(predp)) {
pv <- extract(predictors, p)
pa <- extract(predictors, a)
predp <- fun(model, pv)
preda <- fun(model, pa)
}
e <- list()
pwd <- TRUE
for (d in 1:(length(dist)-1)) {
if (pwd) {
i <- which(dp > dist[d])
ab <- pwdSample(p[i, ], a, reference, lonlat=lonlat, warn=TRUE)
i <- i[!is.na(ab)]
j <- stats::na.omit(ab)
abss <- preda[j]
pres <- predp[i]
} else {
abss <- preda[da > dist[d] & da <= dist[d+1]]
pres <- predp[dp > dist[d] & dp <= dist[d+1]]
}
if (NROW(pres) > 1 & NROW(abss) > 1) {
e[[d]] <- evaluate(pres, abss)
} else {
e[[d]] <- NULL
}
}
dist <- (dist[-1] + dist[-length(dist)]) / 2
names(e) <- dist[2:(length(e)+1)]
e
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.