Nothing
### R code from vignette source 'svmdoc.Rnw'
###################################################
### code chunk number 1: svmdoc.Rnw:140-150
###################################################
library(e1071)
library(randomForest)
data(Glass, package="mlbench")
## split data into a train and test set
index <- 1:nrow(Glass)
N <- trunc(length(index)/3)
testindex <- sample(index, N)
testset <- Glass[testindex,]
trainset <- Glass[-testindex,]
###################################################
### code chunk number 2: svmdoc.Rnw:155-158
###################################################
## svm
svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1)
svm.pred <- predict(svm.model, testset[,-10])
###################################################
### code chunk number 3: svmdoc.Rnw:163-166
###################################################
## randomForest
rf.model <- randomForest(Type ~ ., data = trainset)
rf.pred <- predict(rf.model, testset[,-10])
###################################################
### code chunk number 4: svmdoc.Rnw:169-174
###################################################
## compute svm confusion matrix
table(pred = svm.pred, true = testset[,10])
## compute randomForest confusion matrix
table(pred = rf.pred, true = testset[,10])
###################################################
### code chunk number 5: svmdoc.Rnw:179-215
###################################################
library(xtable)
rf.acc <- c()
sv.acc <- c()
rf.kap <- c()
sv.kap <- c()
reps <- 10
for (i in 1:reps) {
## split data into a train and test set
index <- 1:nrow(Glass)
N <- trunc(length(index)/3)
testindex <- sample(index, N)
testset <- na.omit(Glass[testindex,])
trainset <- na.omit(Glass[-testindex,])
## svm
svm.model <- svm(Type ~ ., data = trainset, cost = 8, gamma = 0.0625)
svm.pred <- predict(svm.model, testset[,-10])
tab <- classAgreement(table(svm.pred, testset[,10]))
sv.acc[i] <- tab$diag
sv.kap[i] <- tab$kappa
## randomForest
rf.model <- randomForest(Type ~ ., data = trainset)
rf.pred <- predict(rf.model, testset[,-10])
tab <- classAgreement(table(rf.pred, testset[,10]))
rf.acc[i] <- tab$diag
rf.kap[i] <- tab$kappa
}
x <- rbind(summary(sv.acc), summary(rf.acc), summary(sv.kap), summary(rf.kap))
rownames <- c()
tab <- cbind(rep(c("svm","randomForest"),2), round(x,2))
colnames(tab)[1] <- "method"
rownames(tab) <- c("Accuracy","","Kappa"," ")
xtable(tab, label = "tab:class", caption = "Performance of \\texttt{svm()} and\
\\texttt{randomForest()} for classification (10 replications)")
###################################################
### code chunk number 6: svmdoc.Rnw:228-248
###################################################
library(e1071)
library(randomForest)
data(Ozone, package="mlbench")
## split data into a train and test set
index <- 1:nrow(Ozone)
N <- trunc(length(index)/3)
testindex <- sample(index, N)
testset <- na.omit(Ozone[testindex,-3])
trainset <- na.omit(Ozone[-testindex,-3])
## svm
svm.model <- svm(V4 ~ ., data = trainset, cost = 1000, gamma = 0.0001)
svm.pred <- predict(svm.model, testset[,-3])
sqrt(crossprod(svm.pred - testset[,3]) / N)
## random Forest
rf.model <- randomForest(V4 ~ ., data = trainset)
rf.pred <- predict(rf.model, testset[,-3])
sqrt(crossprod(rf.pred - testset[,3]) / N)
###################################################
### code chunk number 7: svmdoc.Rnw:251-275
###################################################
rf.res <- c()
sv.res <- c()
reps <- 10
for (i in 1:reps) {
## split data into a train and test set
index <- 1:nrow(Ozone)
N <- trunc(length(index)/3)
testindex <- sample(index, N)
testset <- na.omit(Ozone[testindex,-3])
trainset <- na.omit(Ozone[-testindex,-3])
## svm
svm.model <- svm(V4 ~ ., data = trainset, cost = 1000, gamma = 0.0001)
svm.pred <- predict(svm.model, testset[,-3])
sv.res[i] <- sqrt(crossprod(svm.pred - testset[,3]) / N)
## randomForest
rf.model <- randomForest(V4 ~ ., data = trainset)
rf.pred <- predict(rf.model, testset[,-3])
rf.res[i] <- sqrt(crossprod(rf.pred - testset[,3]) / N)
}
xtable(rbind(svm = summary(sv.res), randomForest = summary(rf.res)),
label = "tab:reg", caption = "Performance of \\texttt{svm()} and\
\\texttt{randomForest()} for regression (Root Mean Squared Error, 10 replications)")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.