R/helpers.R

Defines functions chkdots gamlss.vcov gamlss.coef model.matrix.gamlss modelparm.fixest modelparm.polr polrvcov model.matrix.polr modelparm.coxph.penal modelparm.coxme modelparm.aovlist modelparm.survreg terms.gls model.frame.gls model.matrix.gls vcovsurvreg modelparm.glmmTMB modelparm.lme modelparm.merMod modelparm.mer modelparm.default modelparm model.frame.lme model.matrix.lme model.matrix.aovlist model.frame.coxme model.matrix.coxme coxph.penalvcov coxph.penalcoef terms.coxph.penal model.frame.coxph.penal model.matrix.coxph.penal

Documented in modelparm

# $Id: helpers.R 494 2023-03-09 11:25:54Z thothorn $

### model.matrix.coxph doesn't return contrasts etc.
#model.matrix.coxph <- function(object, ...) {
#    mm <- model.matrix(delete.response(terms(object)),
#                       data = model.frame(object))
#    at <- attributes(mm)
#    mm <- mm[,-1]
#    at$dim[2] <- at$dim[2] - 1
#    at$dimnames[[2]] <- at$dimnames[[2]][-1]
#    at$assign <- at$assign[-1]
#    attributes(mm) <- at
#    mm
#}

model.matrix.coxph.penal <- function(object, ...) {

    class(object) <- "coxph"
    mm <- model.matrix(object)
    at <- attributes(mm)
    indx <- grep("frailty", colnames(mm))
    ret <- mm[ , -indx, drop = FALSE]
    attr(ret, "assign") <- at$assign[-indx]
    attr(ret, "contrasts") <- at$contrasts
    ret
}

model.frame.coxph.penal <- function(formula, ...) {

    object <- formula
    tm <- terms(object)
    class(object) <- "coxph"
    mf <- model.frame(object)
    ret <- cbind(mf[[1]], model.frame(delete.response(tm), data = mf))
    colnames(ret)[1] <- colnames(mf)[1]
    ret
}

terms.coxph.penal <- function(x, ...) {

    class(x) <- "coxph"           
    tm <- terms(x)
    ctm <- as.character(tm)
    x <- strsplit(ctm[3], "+", fixed = TRUE)[[1]]
    x <- x[-grep("frailty", x)]
    fm <- paste(ctm[2], "~", paste(x, collapse = "+"))
    terms(as.formula(fm))
}

coxph.penalcoef <- function(object, ...) {

    mm <- model.matrix(object)
    class(object) <- "coxph"
    cf <- coef(object)
    cf[1:ncol(mm)]
}

coxph.penalvcov <- function(object, ...) {
    
    mm <- model.matrix(object)
    class(object) <- "coxph"
    vc <- vcov(object)        
    vc[1:ncol(mm), 1:ncol(mm), drop = FALSE]
}


#model.matrix.survreg <- function(object, ...) {
#   model.matrix(delete.response(terms(object)),
#                       data = model.frame(object))
#}

### coxme objects
model.matrix.coxme <- function(object, ...) {
    class(object) <- "coxph"
    model.matrix(object)
}

### coxme objects
model.frame.coxme <- function(formula, ...) {
    object <- formula
    class(object) <- "coxph"
    model.frame(object)
}

model.matrix.aovlist <- function(object, ...)
    stop(sQuote("glht"), " does not support objects of class ", 
         sQuote("aovlist"))

model.matrix.lme <- function(object, ...)
    model.matrix(terms(object), data = model.frame(object), ...)

model.frame.lme <- function(formula, ...) {
    object <- formula
    ret <- object$data
    if (is.null(ret)) stop("object does not contain any data")
    ret
}

### extract coefficients, covariance matrix and 
### degrees of freedom (if available) from `model'
modelparm <- function(model, coef., vcov., df, ...) 
    UseMethod("modelparm")

modelparm.default <- function(model, coef. = coef, 
                              vcov. = function(x) vcov(x, complete = FALSE), 
                              df = NULL, ...) 
{

    ### allow specification of coef and vcov directly
    if (!is.function(coef.)) {
        beta <- coef.
        coef. <- function(model) return(beta)
    }
    if (!is.function(vcov.)) {
        sigma <- vcov.
        vcov. <- function(model) return(sigma)
    }

    ### extract coefficients and their covariance matrix
    beta <- try(coef.(model, ...))
    if (inherits(beta, "try-error"))
        stop("no ", sQuote("coef"), " method for ",
             sQuote("model"), " found!")

    sigma <- try(vcov.(model, ...))
    if (inherits(sigma, "try-error"))
        stop("no ", sQuote("vcov"), " method for ",
             sQuote("model"), " found!")       
    sigma <- as.matrix(sigma)

    if (any(length(beta) != dim(sigma))) 
        stop("dimensions of coefficients and covariance matrix don't match")

    ### determine degrees of freedom
    if (is.null(df)) {
        df <- 0
        ### check if a linear model was supplied
        if (class(model)[1] %in% c("aov", "lm")) {
            class(model) <- "lm"
            df <- summary(model)$df[2]
        }
        if (inherits(model, "parm"))
            df <- model$df
    } else {
        if (df < 0) stop(sQuote("df"), " is not positive")
    }

    ### try to identify non-estimable coefficients
    ### coef.aov removes NAs, thus touch coefficients 
    ### directly
    ocoef <- coef.(model, ...)
    if (inherits(model, "aov")) ocoef <- model$coefficients
    estimable <- rep(TRUE, length(ocoef))
    if (any(is.na(ocoef))) {
        estimable[is.na(ocoef)] <- FALSE
        beta <- ocoef[estimable]
    }

    ### just in case...
    if (length(beta) != ncol(sigma) || nrow(sigma) != sum(estimable))
        stop("could not extract coefficients and covariance matrix from ", 
             sQuote("model"))

    RET <- list(coef = beta, vcov = sigma, df = df, estimable = estimable)
    class(RET) <- "modelparm"
    RET
}

### mixed effects models (package `lme4')
modelparm.mer <- function(model, coef. = lme4::fixef, vcov. = vcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

### mixed effects models (package `lme4Eigen')
modelparm.merMod <- function(model, coef. = lme4::fixef, vcov. = vcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

### package `nlme'
modelparm.lme <- function(model, coef. = nlme::fixef, vcov. = vcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

### package glmmTMB
modelparm.glmmTMB <- function(model, 
    coef. = function(object) glmmTMB::fixef(object)$cond, 
    vcov. = function(object) vcov(object)$cond, 
    df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

### survreg models (package `survival')
vcovsurvreg <- function(object, ...) {
    sigma <- vcov(object)
    p <- length(coef(object))
    return(sigma[1:p, 1:p])
}

### nlme:::gls
model.matrix.gls <- function(object, ...)
    model.matrix(terms(object), data = nlme::getData(object), ...)

model.frame.gls <- function(formula, ...)
    model.frame(formula(formula), data = nlme::getData(formula), ...)

terms.gls <- function(x, ...)
    terms(model.frame(x), ...)

modelparm.survreg <- function(model, coef. = coef, vcov. = vcovsurvreg, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

modelparm.aovlist <- function(model, coef. = coef, vcov. = vcov, df = NULL, ...)
    stop(sQuote("glht"), " does not support objects of class ", sQuote("aovlist"))

modelparm.coxme <- function(model, coef. = coef, vcov. = vcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

modelparm.coxph.penal <- function(model, coef. = coxph.penalcoef, 
                                  vcov. = coxph.penalvcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

model.matrix.polr <- function(object, ...) {
    mm <- model.matrix(delete.response(terms(object)),
                      data = model.frame(object))
    at <- attributes(mm)
    mm <- mm[,-1]
    at$dim[2] <- at$dim[2] - 1
    at$dimnames[[2]] <- at$dimnames[[2]][-1]
    at$assign <- at$assign[-1]
    attributes(mm) <- at
    mm
}


polrvcov <- function(object) {
   cf <- coef(object)
   vcov <- vcov(object)
   vcov[names(cf), names(cf)]
}

modelparm.polr <- function(model, coef. = coef, vcov. = polrvcov, df = NULL, ...)
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)

### fixed effects models (package fixest). Contributed by Grant McDermott 2021-12-17
modelparm.fixest <- function(model, coef. = coef, vcov. = vcov, df = NULL, ...) {
    model <- summary(model, vcov = vcov.)
    vcov. <- vcov(model)
    if (is.null(df))
        df <- fixest::degrees_freedom(model, type = "resid")
    modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...)
}

### gamlss (donated by Marcio A Diniz)
model.matrix.gamlss <- function(object, ...) {
    cf <- na.exclude(coef(object))
    
    ### extract model matrix, frame and terms
    mm <- model.matrix(terms(object),
                       data = model.frame(object))
    aux <- list(assign = attributes(mm)[["assign"]],
                contrasts = attributes(mm)[["contrasts"]])
    
    mm <- mm[, 1:length(cf)]
    attr(mm, "assign") <- aux$assign[1:length(cf)]
    attr(mm, "contrasts") <- aux$contrasts
    mm
}


gamlss.coef <- function(object, ...) {
    dots <- list(...)
    #class(object) <- class(object)[1]
    cf <- na.exclude(coef(object, what = dots$what))
    cf
}

gamlss.vcov <- function(object, ...) {
    dots <- list(...)
    #class(object) <- class(object)[1]
    
    p <- match(dots$what, object$parameters)
    
    vc <- vcov(object, what = dots$what) 
    index <- which(cumsum(rownames(vc) == "(Intercept)") == p)
    vc[index, index, drop = FALSE]
}

### modified from package MASS  
MPinv <- function (X, tol = sqrt(.Machine$double.eps))
{
    if (length(dim(X)) > 2 || !(is.numeric(X) || is.complex(X)))
        stop("X must be a numeric or complex matrix")
    if (!is.matrix(X))
        X <- as.matrix(X)
    Xsvd <- svd(X)
    if (is.complex(X))
        Xsvd$u <- Conj(Xsvd$u)
    Positive <- Xsvd$d > max(tol * Xsvd$d[1], 0)
    if (all(Positive)) 
        RET <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))   
    else if (!any(Positive))
        RET <- array(0, dim(X)[2:1])
    else RET <- Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
        t(Xsvd$u[, Positive, drop = FALSE]))
    return(list(MPinv = RET, rank = sum(Positive)))
}

### meaningless ...
chkdots <- function(...) {

    lst <- list(...)
    if (length(lst) > 0) {
        warning("Argument(s) ", sQuote(names(lst)), " passed to ", sQuote("..."), 
                " are ignored", call. = TRUE)
    }
}

Try the multcomp package in your browser

Any scripts or data that you put into this service are public.

multcomp documentation built on Nov. 5, 2024, 3:01 p.m.