Description Usage Arguments Details Value Author(s) See Also Examples
The pamrML functions are wrappers around pamr.train and
pamr.predict that provide a more classical R modelling
interface than the original versions.
| 1 2 3 4 5 | 
| formula | model formula | 
| data | data frame | 
| x | object of class  | 
| object | object of class  | 
| newdata | data frame containing new observations for which predicted
values will be estimated based on the model contained in  | 
| ... | further arguments to the  | 
The name of the response variable is kept as an attribute in the
pamrML object to allow for predict methods that can be
easily used for writing converter functions for use in the 
MLInterfaces framework. 
For pamrML an object of class pamrML which
adds an attribute to the original object returned by
pamr.train (or pamrTrain).
The print method lists the names of the different
components of the pamrML object.
The predict method returns a vector of predicted values
Tobias Verbeke
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |   set.seed(120)
  x <- matrix(rnorm(1000*20), ncol=20)
  y <- sample(c(1:4), size=20, replace=TRUE)
  # for original pam
  mydata <- list(x=x, y=y)
  mytraindata <- list(x=x[,1:15],y=factor(y[1:15]))
  mytestdata <-  list(x = x[,16:20], y = factor(y[16:20]))
  # for formula-based methods including pamrML
  alldf <- cbind.data.frame(t(mydata$x), y)
  traindf <- cbind.data.frame(t(mytraindata$x), y = mytraindata$y)
  testdf <- cbind.data.frame(t(mytestdata$x), y = mytestdata$y)
  ### create pamrML object
  pamrMLObj <- pamrML(y ~ ., traindf)
  pamrMLObj
  ### test predict method
  predict(object = pamrMLObj, newdata = testdf, 
      threshold = 1) # threshold compulsory
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.