Description Usage Arguments Details Note See Also Examples
The method writes inputs and outputs of spatial analysis (a list of point, gridded and/or polygon data usually) to KML and opens the KML file in Google Earth (or any other default package used to view KML/KMZ files).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ## S4 method for signature 'sf'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialPointsDataFrame'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
size, colour, points_names,
shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png",
metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialLinesDataFrame'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialPolygonsDataFrame'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, plot.labpt, labels, metadata = NULL,
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialPixelsDataFrame'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...)
## S4 method for signature 'SpatialGridDataFrame'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...)
## S4 method for signature 'RasterLayer'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...)
## S4 method for signature 'SpatialPhotoOverlay'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
dae.name, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SoilProfileCollection'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
var.name, metadata = NULL, kmz = get("kmz", envir = plotKML.opts),
open.kml = TRUE, ...)
## S4 method for signature 'STIDF'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png",
points_names, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'STFDF'
plotKML(obj, ...)
## S4 method for signature 'STSDF'
plotKML(obj, ...)
## S4 method for signature 'STTDF'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, start.icon = "http://maps.google.com/mapfiles/kml/pal2/icon18.png",
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'RasterBrickTimeSeries'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
pngwidth = 680, pngheight = 180, pngpointsize = 14,
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'RasterBrickSimulations'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
obj.summary = TRUE,
pngwidth = 680, pngheight = 200, pngpointsize = 14,
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialMaxEntOutput'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
html.file = obj@maxent@html,
iframe.width = 800, iframe.height = 800, pngwidth = 280,
pngheight = 280, pngpointsize = 14, colour,
shape = "http://plotkml.r-forge.r-project.org/icon17.png",
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE,
TimeSpan.begin = obj@TimeSpan.begin, TimeSpan.end = obj@TimeSpan.end, ...)
## S4 method for signature 'SpatialPredictions'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""), colour,
grid2poly = FALSE, obj.summary = FALSE, plot.svar = FALSE,
pngwidth = 210, pngheight = 580, pngpointsize = 14,
metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialSamplingPattern'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
colour, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'SpatialVectorsSimulations'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""), colour,
grid2poly = FALSE, obj.summary = TRUE, plot.svar = FALSE,
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
## S4 method for signature 'list'
plotKML(obj,
folder.name = normalizeFilename(deparse(substitute(obj, env=parent.frame()))),
file.name = paste(folder.name, ".kml", sep=""),
size = NULL, colour, points_names = "",
shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png",
plot.labpt = TRUE, labels = "", metadata = NULL,
kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
|
obj |
input object of specific class; either some sf, or sp, or raster or spacetime package class object, or plotKML composite objects containing both inputs and outputs of analysis |
folder.name |
character; folder name in the KML file |
file.name |
character; output KML file name |
size |
for point objects for plotting (see aesthetics) |
colour |
colour variable for plotting (see aesthetics) |
points_names |
vector of characters that can be used as labels |
shape |
character; icons used for plotting (see aesthetics) |
raster_name |
(optional) specify the output file name (PNG) |
var.name |
target variable name (only valid for visualization of |
metadata |
(optional) the metadata object |
plot.labpt |
logical; specifies whether to plot centroids for polygon data |
labels |
character vector; list of labels that will attached to the centroids |
start.icon |
icon for the start position (for trajectory data) |
dae.name |
output DAE file name |
html.file |
specify the location of the html file containing report data (if the input object is of class |
iframe.width |
integer; width of the screen for iframe |
iframe.height |
integer; height of the screen for iframe |
TimeSpan.begin |
object of class |
TimeSpan.end |
object of class |
pngwidth |
integer; width of the PNG plot (screen image) |
pngheight |
integer; height of the PNG plot (screen image) |
pngpointsize |
integer; text size in the PNG plot (screen image) |
grid2poly |
logical; specifies whether to convert gridded object to polygons |
obj.summary |
logical; specifies whether to print the object summary |
plot.svar |
logical; specifies whether to plot the model uncertainty |
kmz |
logical; specifies whether to compress the output KML file |
open.kml |
logical; specifies whether to directly open the output KML file (i.e. in Google Earth) |
... |
(optional) arguments passed to the lower level functions |
This is a generic function to plot various spatial and spatio-temporal R objects that contain both inputs and outputs of spatial analysis. The resulting plots (referred to as ‘views’) are expected to be cartographically complete as they should contain legends, and data and model descriptions. In principle, plotKML
works with both simple spatial objects, and complex objects such as "SpatialPredictions"
, "SpatialVectorsSimulations"
, "RasterBrickSimulations"
, "RasterBrickTimeSeries"
, "SpatialMaxEntOutput"
and similar. To further customize visualizations consider combining the lower level functions kml_open
, kml_close
, kml_compress
, kml_screen
into your own plotKML()
method.
All ST-classes are coerced to the STIDF format and hence use the plotKML method for STIDFs.
The sf
objects are processed according to the class of the geometry column. The aestethics are defined in the same way as for their sp counterparts.
To prepare a list of objects of class "SpatialPointsDataFrame"
, "SpatialLinesDataFrame"
, "SpatialPolygonsDataFrame"
, or "SpatialPixelsDataFrame"
consider using the landmap::tile
function. Writting large spatial objects via plotKML can be time consuming. Please refer to the package manual for more information.
SpatialPredictions-class
, SpatialVectorsSimulations-class
, RasterBrickSimulations-class
, RasterBrickTimeSeries-class
, SpatialMaxEntOutput-class
, SpatialSamplingPattern-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | plotKML.env(kmz = FALSE)
## -------------- SpatialPointsDataFrame --------- ##
library(sp)
library(rgdal)
data(eberg)
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
## subset to 20 percent:
eberg <- eberg[runif(nrow(eberg))<.1,]
## Not run: ## bubble type plot:
plotKML(eberg["CLYMHT_A"])
plotKML(eberg["CLYMHT_A"], colour_scale=rep("#FFFF00", 2), points_names="")
## End(Not run)
## plot points with a legend:
shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png"
kml.file = paste0(tempdir(), "/eberg_CLYMHT_A.kml")
leg.file = paste0(dirname(kml.file), "/kml_legend.png")
kml_open(kml.file)
kml_layer(eberg["CLYMHT_A"], colour=CLYMHT_A, z.lim=c(20,60),
colour_scale=SAGA_pal[[1]], shape=shape, points_names="")
kml_legend.bar(x=eberg$CLYMHT_A,
legend.file=leg.file,
legend.pal=SAGA_pal[[1]], z.lim=c(20,60))
kml_screen(image.file=leg.file)
kml_close(kml.file)
## ----- sf objects with sfc_POINT geometry ----- ##
eberg_sf <- sf::st_as_sf(eberg)
## Not run:
plotKML(eberg_sf["CLYMHT_A"])
plotKML(eberg_sf["CLYMHT_A"], colour_scale = rep("#FFFF00", 2), points_names = "")
## End(Not run)
## -------------- SpatialLinesDataFrame --------- ##
data(eberg_contours)
## Not run:
plotKML(eberg_contours)
## plot contour lines with actual altitudes:
plotKML(eberg_contours, colour=Z, altitude=Z)
## End(Not run)
## ---- sf objects with sfc_LINESTRING geometry ---- ##
eberg_contours_sf <- sf::st_as_sf(eberg_contours)
## Not run:
plotKML(eberg_contours_sf)
plotKML(eberg_contours_sf, colour = Z, altitude = Z)
## End(Not run)
## -------------- SpatialPolygonsDataFrame --------- ##
data(eberg_zones)
## Not run:
plotKML(eberg_zones["ZONES"])
## add altitude:
zmin = 230
plotKML(eberg_zones["ZONES"], altitude=zmin+runif(length(eberg_zones))*500)
## End(Not run)
## ------ sf objects with sfc_POLYGON geometry ------ ##
eberg_zones_sf <- sf::st_as_sf(eberg_zones)
## Not run:
plotKML(eberg_zones_sf["ZONES"])
plotKML(eberg_zones_sf["ZONES"], altitude = zmin + runif(length(eberg_zones)) * 500)
## End(Not run)
## -------------- SpatialPixelsDataFrame --------- ##
library(rgdal)
library(raster)
data(eberg_grid)
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
TWI <- reproject(eberg_grid["TWISRT6"])
data(SAGA_pal)
## Not run: ## set limits manually (increase resolution):
plotKML(TWI, colour_scale = SAGA_pal[[1]])
plotKML(TWI, z.lim=c(12,20), colour_scale = SAGA_pal[[1]])
## End(Not run)
## categorical data:
eberg_grid$LNCCOR6 <- as.factor(paste(eberg_grid$LNCCOR6))
levels(eberg_grid$LNCCOR6)
data(worldgrids_pal)
## attr(worldgrids_pal["corine2k"][[1]], "names")
pal = as.character(worldgrids_pal["corine2k"][[1]][c(1,11,13,14,16,17,18)])
LNCCOR6 <- reproject(eberg_grid["LNCCOR6"])
## Not run:
plotKML(LNCCOR6, colour_scale=pal)
## End(Not run)
## -------------- SpatialPhotoOverlay --------- ##
## Not run:
library(RCurl)
imagename = "Soil_monolith.jpg"
urlExists = url.exists("https://commons.wikimedia.org")
if(urlExists){
x1 <- getWikiMedia.ImageInfo(imagename)
sm <- spPhoto(filename = x1$url$url, exif.info = x1$metadata)
# str(sm)
plotKML(sm)
}
## End(Not run)
## -------------- SoilProfileCollection --------- ##
library(aqp)
library(plyr)
## sample profile from Nigeria:
lon = 3.90; lat = 7.50; id = "ISRIC:NG0017"; FAO1988 = "LXp"
top = c(0, 18, 36, 65, 87, 127)
bottom = c(18, 36, 65, 87, 127, 181)
ORCDRC = c(18.4, 4.4, 3.6, 3.6, 3.2, 1.2)
hue = c("7.5YR", "7.5YR", "2.5YR", "5YR", "5YR", "10YR")
value = c(3, 4, 5, 5, 5, 7); chroma = c(2, 4, 6, 8, 4, 3)
## prepare a SoilProfileCollection:
prof1 <- join(data.frame(id, top, bottom, ORCDRC, hue, value, chroma),
data.frame(id, lon, lat, FAO1988), type='inner')
prof1$soil_color <- with(prof1, munsell2rgb(hue, value, chroma))
depths(prof1) <- id ~ top + bottom
site(prof1) <- ~ lon + lat + FAO1988
coordinates(prof1) <- ~ lon + lat
proj4string(prof1) <- CRS("+proj=longlat +datum=WGS84")
prof1
## Not run:
plotKML(prof1, var.name="ORCDRC", color.name="soil_color")
## End(Not run)
## -------------- STIDF --------- ##
library(sp)
library(spacetime)
## daily temperatures for Croatia:
data(HRtemp08)
## format the time column:
HRtemp08$ctime <- as.POSIXct(HRtemp08$DATE, format="%Y-%m-%dT%H:%M:%SZ")
## create a STIDF object:
sp <- SpatialPoints(HRtemp08[,c("Lon","Lat")])
proj4string(sp) <- CRS("+proj=longlat +datum=WGS84")
HRtemp08.st <- STIDF(sp, time = HRtemp08$ctime, data = HRtemp08[,c("NAME","TEMP")])
## subset to first 500 records:
HRtemp08_jan <- HRtemp08.st[1:500]
str(HRtemp08_jan)
## Not run:
plotKML(HRtemp08_jan[,,"TEMP"], LabelScale = .4)
## End(Not run)
## foot-and-mouth disease data:
data(fmd)
fmd0 <- data.frame(fmd)
coordinates(fmd0) <- c("X", "Y")
proj4string(fmd0) <- CRS("+init=epsg:27700")
fmd_sp <- as(fmd0, "SpatialPoints")
dates <- as.Date("2001-02-18")+fmd0$ReportedDay
library(spacetime)
fmd_ST <- STIDF(fmd_sp, dates, data.frame(ReportedDay=fmd0$ReportedDay))
data(SAGA_pal)
## Not run:
plotKML(fmd_ST, colour_scale=SAGA_pal[[1]])
## End(Not run)
## -------------- STFDF --------- ##
## Not run:
## results of krigeST:
library(gstat)
library(sp)
library(spacetime)
library(raster)
## define space-time variogram
sumMetricVgm <- vgmST("sumMetric",
space=vgm( 4.4, "Lin", 196.6, 3),
time =vgm( 2.2, "Lin", 1.1, 2),
joint=vgm(34.6, "Exp", 136.6, 12),
stAni=51.7)
## example from the gstat package:
data(air)
rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))
rr <- rural[,"2005-06-01/2005-06-03"]
rr <- as(rr,"STSDF")
x1 <- seq(from=6,to=15,by=1)
x2 <- seq(from=48,to=55,by=1)
DE_gridded <- SpatialPoints(cbind(rep(x1,length(x2)), rep(x2,each=length(x1))),
proj4string=CRS(proj4string(rr@sp)))
gridded(DE_gridded) <- TRUE
DE_pred <- STF(sp=as(DE_gridded,"SpatialPoints"), time=rr@time)
DE_kriged <- krigeST(PM10~1, data=rr, newdata=DE_pred,
modelList=sumMetricVgm)
gridded(DE_kriged@sp) <- TRUE
#stplot(DE_kriged)
## plot in Google Earth:
z.lim = range(DE_kriged@data, na.rm=TRUE)
plotKML(DE_kriged, z.lim=z.lim)
## add observations points:
plotKML(rr, z.lim=z.lim)
## End(Not run)
## -------------- STTDF --------- ##
## Not run:
library(fossil)
library(spacetime)
library(adehabitatLT)
data(gpxbtour)
## format the time column:
gpxbtour$ctime <- as.POSIXct(gpxbtour$time, format="%Y-%m-%dT%H:%M:%SZ")
coordinates(gpxbtour) <- ~lon+lat
proj4string(gpxbtour) <- CRS("+proj=longlat +datum=WGS84")
xy <- as.list(data.frame(t(coordinates(gpxbtour))))
gpxbtour$dist.km <- sapply(xy, function(x) {
deg.dist(long1=x[1], lat1=x[2], long2=xy[[1]][1], lat2=xy[[1]][2])
} )
## convert to a STTDF class:
gpx.ltraj <- as.ltraj(coordinates(gpxbtour), gpxbtour$ctime, id = "th")
gpx.st <- as(gpx.ltraj, "STTDF")
gpx.st$speed <- gpxbtour$speed
gpx.st@sp@proj4string <- CRS("+proj=longlat +datum=WGS84")
str(gpx.st)
plotKML(gpx.st, colour="speed")
## End(Not run)
## -------------- Spatial Metadata --------- ##
## Not run:
eberg.md <- spMetadata(eberg, xml.file=system.file("eberg.xml", package="plotKML"),
Target_variable="SNDMHT_A", Citation_title="Ebergotzen profiles")
plotKML(eberg[1:100,"CLYMHT_A"], metadata=eberg.md)
## End(Not run)
## -------------- RasterBrickTimeSeries --------- ##
library(raster)
library(sp)
data(LST)
gridded(LST) <- ~lon+lat
proj4string(LST) <- CRS("+proj=longlat +datum=WGS84")
dates <- sapply(strsplit(names(LST), "LST"), function(x){x[[2]]})
datesf <- format(as.Date(dates, "%Y_%m_%d"), "%Y-%m-%dT%H:%M:%SZ")
## begin / end dates +/- 4 days:
TimeSpan.begin = as.POSIXct(unclass(as.POSIXct(datesf))-4*24*60*60, origin="1970-01-01")
TimeSpan.end = as.POSIXct(unclass(as.POSIXct(datesf))+4*24*60*60, origin="1970-01-01")
## pick climatic stations in the area:
pnts <- HRtemp08[which(HRtemp08$NAME=="Pazin")[1],]
pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Crni Lug - NP Risnjak")[1],])
pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Cres")[1],])
coordinates(pnts) <- ~Lon + Lat
proj4string(pnts) <- CRS("+proj=longlat +datum=WGS84")
## get the dates from the file names:
LST_ll <- brick(LST[1:5])
LST_ll@title = "Time series of MODIS Land Surface Temperature images"
LST.ts <- new("RasterBrickTimeSeries", variable = "LST", sampled = pnts,
rasters = LST_ll, TimeSpan.begin = TimeSpan.begin[1:5],
TimeSpan.end = TimeSpan.end[1:5])
data(SAGA_pal)
## Not run: ## plot MODIS images in Google Earth:
plotKML(LST.ts, colour_scale=SAGA_pal[[1]])
## End(Not run)
## -------------- Spatial Predictions --------- ##
library(sp)
library(rgdal)
library(gstat)
data(meuse)
coordinates(meuse) <- ~x+y
proj4string(meuse) <- CRS("+init=epsg:28992")
## load grids:
data(meuse.grid)
gridded(meuse.grid) <- ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
## Not run: ## fit a model:
library(landmap)
omm <- fit.gstatModel(observations = meuse, formulaString = om~dist,
family = gaussian(log), covariates = meuse.grid)
## produce SpatialPredictions:
om.rk <- predict(omm, predictionLocations = meuse.grid)
## plot the whole geostatical mapping project in Google Earth:
plotKML(om.rk, colour_scale = SAGA_pal[[1]])
## plot each cell as polygon:
plotKML(om.rk, colour_scale = SAGA_pal[[1]], grid2poly = TRUE)
## End(Not run)
## -------------- RasterBrickSimulations --------- ##
## Not run:
library(sp)
library(gstat)
data(barxyz)
## define the projection system:
prj = "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0
+ellps=bessel +units=m
+towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824"
coordinates(barxyz) <- ~x+y
proj4string(barxyz) <- CRS(prj)
data(bargrid)
coordinates(bargrid) <- ~x+y
gridded(bargrid) <- TRUE
proj4string(bargrid) <- CRS(prj)
## fit a variogram and generate simulations:
Z.ovgm <- vgm(psill=1352, model="Mat", range=650, nugget=0, kappa=1.2)
sel <- runif(length(barxyz$Z))<.2
## Note: this operation can be time consuming
sims <- krige(Z~1, barxyz[sel,], bargrid, model=Z.ovgm, nmax=20,
nsim=10, debug.level=-1)
## specify the cross-section:
t1 <- Line(matrix(c(bargrid@bbox[1,1], bargrid@bbox[1,2], 5073012, 5073012), ncol=2))
transect <- SpatialLines(list(Lines(list(t1), ID="t")), CRS(prj))
## glue to a RasterBrickSimulations object:
library(raster)
bardem_sims <- new("RasterBrickSimulations", variable = "elevations",
sampled = transect, realizations = brick(sims))
## plot the whole project and open in Google Earth:
data(R_pal)
plotKML(bardem_sims, colour_scale = R_pal[[4]])
## End(Not run)
## -------------- SpatialVectorsSimulations --------- ##
## Not run:
data(barstr)
data(bargrid)
library(sp)
coordinates(bargrid) <- ~ x+y
gridded(bargrid) <- TRUE
## output topology:
cell.size = bargrid@grid@cellsize[1]
bbox = bargrid@bbox
nrows = round(abs(diff(bbox[1,])/cell.size), 0)
ncols = round(abs(diff(bbox[2,])/cell.size), 0)
gridT = GridTopology(cellcentre.offset=bbox[,1],
cellsize=c(cell.size,cell.size),
cells.dim=c(nrows, ncols))
bar_sum <- count.GridTopology(gridT, vectL=barstr[1:5])
## NOTE: this operation can be time consuming!
## plot the whole project and open in Google Earth:
plotKML(bar_sum)
## End(Not run)
## -------------- SpatialMaxEntOutput --------- ##
## Not run:
library(maptools)
library(rgdal)
data(bigfoot)
aea.prj <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96
+x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
data(USAWgrids)
gridded(USAWgrids) <- ~s1+s2
proj4string(USAWgrids) <- CRS(aea.prj)
bbox <- spTransform(USAWgrids, CRS("+proj=longlat +datum=WGS84"))@bbox
sel = bigfoot$Lon > bbox[1,1] & bigfoot$Lon < bbox[1,2] &
bigfoot$Lat > bbox[2,1] & bigfoot$Lat < bbox[2,2]
bigfoot <- bigfoot[sel,]
coordinates(bigfoot) <- ~Lon+Lat
proj4string(bigfoot) <- CRS("+proj=longlat +datum=WGS84")
library(spatstat)
bigfoot.aea <- as.ppp(spTransform(bigfoot, CRS(aea.prj)))
## Load the covariates:
sel.grids <- c("globedem","nlights03","sdroads","gcarb","twi","globcov")
library(landmap)
library(dismo)
## run MaxEnt analysis:
jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')
if(file.exists(jar)){
bigfoot.smo <- MaxEnt(bigfoot.aea, USAWgrids[sel.grids])
icon = "http://plotkml.r-forge.r-project.org/bigfoot.png"
data(R_pal)
plotKML(bigfoot.smo, colour_scale = R_pal[["bpy_colors"]], shape = icon)
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.