Nothing
## particle filtering codes
setClass(
"pfilterd.pomp",
contains="pomp",
slots=c(
pred.mean="array",
pred.var="array",
filter.mean="array",
paramMatrix="array",
eff.sample.size="numeric",
cond.loglik="numeric",
saved.states="list",
saved.params="list",
seed="integer",
Np="integer",
tol="numeric",
nfail="integer",
loglik="numeric"
),
prototype=prototype(
pred.mean=array(data=numeric(0),dim=c(0,0)),
pred.var=array(data=numeric(0),dim=c(0,0)),
filter.mean=array(data=numeric(0),dim=c(0,0)),
paramMatrix=array(data=numeric(0),dim=c(0,0)),
eff.sample.size=numeric(0),
cond.loglik=numeric(0),
saved.states=list(),
saved.params=list(),
seed=as.integer(NA),
Np=as.integer(NA),
tol=as.double(NA),
nfail=as.integer(NA),
loglik=as.double(NA)
)
)
pfilter.internal <- function (object, params, Np,
tol, max.fail,
pred.mean, pred.var, filter.mean,
cooling, cooling.m, .mif2 = FALSE,
.rw.sd, seed, verbose,
save.states, save.params,
.transform,
.getnativesymbolinfo = TRUE) {
pompLoad(object)
ptsi.for <- gnsi.rproc <- gnsi.dmeas <- as.logical(.getnativesymbolinfo)
mif2 <- as.logical(.mif2)
transform <- as.logical(.transform)
if (missing(seed)) seed <- NULL
if (!is.null(seed)) {
if (!exists(".Random.seed",where=.GlobalEnv)) { # need to initialize the RNG
runif(1)
}
save.seed <- get(".Random.seed",pos=.GlobalEnv)
set.seed(seed)
}
if (length(params)==0)
stop(sQuote("pfilter")," error: ",sQuote("params")," must be specified",call.=FALSE)
if (missing(tol))
stop(sQuote("pfilter")," error: ",sQuote("tol")," must be specified",call.=FALSE)
one.par <- FALSE
times <- time(object,t0=TRUE)
ntimes <- length(times)-1
if (missing(Np))
Np <- NCOL(params)
if (is.function(Np)) {
Np <- try(
vapply(seq.int(from=0,to=ntimes,by=1),Np,numeric(1)),
silent=FALSE
)
if (inherits(Np,"try-error"))
stop("if ",sQuote("Np")," is a function, it must return a single positive integer",call.=FALSE)
}
if (length(Np)==1)
Np <- rep(Np,times=ntimes+1)
else if (length(Np)!=(ntimes+1))
stop(sQuote("Np")," must have length 1 or length ",ntimes+1,call.=FALSE)
if (any(Np<=0))
stop("number of particles, ",sQuote("Np"),", must always be positive",call.=FALSE)
if (!is.numeric(Np))
stop(sQuote("Np")," must be a number, a vector of numbers, or a function",call.=FALSE)
Np <- as.integer(Np)
if (is.null(dim(params))) {
one.par <- TRUE # there is only one parameter vector
coef(object) <- params # set params slot to the parameters
params <- matrix(
params,
nrow=length(params),
ncol=Np[1L],
dimnames=list(
names(params),
NULL
)
)
}
paramnames <- rownames(params)
if (is.null(paramnames))
stop(sQuote("pfilter")," error: ",sQuote("params")," must have rownames",call.=FALSE)
x <- init.state(
object,
params=if (transform) {
partrans(object,params,dir="fromEstimationScale",
.getnativesymbolinfo=ptsi.for)
} else {
params
}
)
statenames <- rownames(x)
nvars <- nrow(x)
ptsi.for <- FALSE
## set up storage for saving samples from filtering distributions
if (save.states) {
xparticles <- setNames(vector(mode="list",length=ntimes),time(object))
} else {
xparticles <- list()
}
if (save.params) {
pparticles <- setNames(vector(mode="list",length=ntimes),time(object))
} else {
pparticles <- list()
}
random.walk <- !missing(.rw.sd)
if (random.walk) {
rw.names <- names(.rw.sd)
if (is.null(rw.names)||!is.numeric(.rw.sd))
stop(sQuote("pfilter")," error: ",sQuote(".rw.sd")," must be a named vector",call.=FALSE)
if (!all(rw.names%in%paramnames))
stop(
sQuote("pfilter")," error: the rownames of ",
sQuote("params")," must include all of the names of ",
sQuote(".rw.sd"),"",call.=FALSE
)
sigma <- .rw.sd
} else {
rw.names <- character(0)
sigma <- NULL
}
loglik <- rep(NA,ntimes)
eff.sample.size <- numeric(ntimes)
nfail <- 0
npars <- length(rw.names)
## set up storage for prediction means, variances, etc.
if (pred.mean)
pred.m <- matrix(
data=0,
nrow=nvars+npars,
ncol=ntimes,
dimnames=list(
variable=c(statenames,rw.names),
time=time(object))
)
else
pred.m <- array(data=numeric(0),dim=c(0,0))
if (pred.var)
pred.v <- matrix(
data=0,
nrow=nvars+npars,
ncol=ntimes,
dimnames=list(
variable=c(statenames,rw.names),
time=time(object))
)
else
pred.v <- array(data=numeric(0),dim=c(0,0))
if (filter.mean)
if (random.walk)
filt.m <- matrix(
data=0,
nrow=nvars+length(paramnames),
ncol=ntimes,
dimnames=list(
variable=c(statenames,paramnames),
time=time(object))
)
else
filt.m <- matrix(
data=0,
nrow=nvars,
ncol=ntimes,
dimnames=list(
variable=statenames,
time=time(object))
)
else
filt.m <- array(data=numeric(0),dim=c(0,0))
for (nt in seq_len(ntimes)) {
if (mif2) {
cool.sched <- cooling(nt=nt,m=cooling.m)
sigma1 <- sigma*cool.sched$alpha
} else {
sigma1 <- sigma
}
## transform the parameters if necessary
if (transform) tparams <- partrans(object,params,dir="fromEstimationScale",
.getnativesymbolinfo=ptsi.for)
ptsi.for <- FALSE
## advance the state variables according to the process model
X <- try(
rprocess(
object,
xstart=x,
times=times[c(nt,nt+1)],
params=if (transform) tparams else params,
offset=1,
.getnativesymbolinfo=gnsi.rproc
),
silent=FALSE
)
if (inherits(X,'try-error'))
stop(sQuote("pfilter")," error: process simulation error",call.=FALSE)
gnsi.rproc <- FALSE
if (pred.var) { ## check for nonfinite state variables and parameters
problem.indices <- unique(which(!is.finite(X),arr.ind=TRUE)[,1L])
if (length(problem.indices)>0) { # state variables
stop(
sQuote("pfilter")," error: non-finite state variable(s): ",
paste(rownames(X)[problem.indices],collapse=', '),
call.=FALSE
)
}
if (random.walk) { # parameters (need to be checked only if 'random.walk=TRUE')
problem.indices <- unique(which(!is.finite(params[rw.names,,drop=FALSE]),arr.ind=TRUE)[,1L])
if (length(problem.indices)>0) {
stop(
sQuote("pfilter")," error: non-finite parameter(s): ",
paste(rw.names[problem.indices],collapse=', '),
call.=FALSE
)
}
}
}
## determine the weights
weights <- try(
dmeasure(
object,
y=object@data[,nt,drop=FALSE],
x=X,
times=times[nt+1],
params=if (transform) tparams else params,
log=FALSE,
.getnativesymbolinfo=gnsi.dmeas
),
silent=FALSE
)
if (inherits(weights,'try-error'))
stop(sQuote("pfilter")," error: error in calculation of weights",call.=FALSE)
if (!all(is.finite(weights)))
stop(sQuote("pfilter")," error: ",sQuote("dmeasure")," returns non-finite value",call.=FALSE)
gnsi.dmeas <- FALSE
## compute prediction mean, prediction variance, filtering mean,
## effective sample size, log-likelihood
## also do resampling if filtering has not failed
xx <- try(
.Call(
pfilter_computations,
X,params,Np[nt+1],
random.walk,
sigma1,
pred.mean,pred.var,
filter.mean,one.par,
weights,tol
),
silent=FALSE
)
if (inherits(xx,'try-error')) {
stop(sQuote("pfilter")," error",call.=FALSE)
}
all.fail <- xx$fail
loglik[nt] <- xx$loglik
eff.sample.size[nt] <- xx$ess
x <- xx$states
params <- xx$params
if (pred.mean)
pred.m[,nt] <- xx$pm
if (pred.var)
pred.v[,nt] <- xx$pv
if (filter.mean)
filt.m[,nt] <- xx$fm
if (all.fail) { ## all particles are lost
nfail <- nfail+1
if (verbose)
message("filtering failure at time t = ",times[nt+1])
if (nfail>max.fail)
stop(sQuote("pfilter")," error: too many filtering failures",call.=FALSE)
}
if (save.states) {
xparticles[[nt]] <- x
dimnames(xparticles[[nt]]) <- setNames(dimnames(xparticles[[nt]]),c("variable","rep"))
}
if (save.params) {
pparticles[[nt]] <- params
dimnames(pparticles[[nt]]) <- setNames(dimnames(pparticles[[nt]]),c("variable","rep"))
}
if (verbose && (nt%%5==0))
cat("pfilter timestep",nt,"of",ntimes,"finished\n")
}
if (!is.null(seed)) {
assign(".Random.seed",save.seed,pos=.GlobalEnv)
seed <- save.seed
}
if (nfail>0)
warning(sprintf(ngettext(nfail,msg1="%d filtering failure occurred in ",
msg2="%d filtering failures occurred in "),nfail),
sQuote("pfilter"),call.=FALSE)
pompUnload(object)
new(
"pfilterd.pomp",
object,
pred.mean=pred.m,
pred.var=pred.v,
filter.mean=filt.m,
paramMatrix=if (mif2) params else array(data=numeric(0),dim=c(0,0)),
eff.sample.size=eff.sample.size,
cond.loglik=loglik,
saved.states=xparticles,
saved.params=pparticles,
seed=as.integer(seed),
Np=as.integer(Np),
tol=tol,
nfail=as.integer(nfail),
loglik=sum(loglik)
)
}
setMethod(
"pfilter",
signature=signature(object="pomp"),
function (object, params, Np,
tol = 1e-17,
max.fail = Inf,
pred.mean = FALSE,
pred.var = FALSE,
filter.mean = FALSE,
save.states = FALSE,
save.params = FALSE,
seed = NULL,
verbose = getOption("verbose"),
...) {
if (missing(params)) params <- coef(object)
pfilter.internal(
object=object,
params=params,
Np=Np,
tol=tol,
max.fail=max.fail,
pred.mean=pred.mean,
pred.var=pred.var,
filter.mean=filter.mean,
save.states=save.states,
save.params=save.params,
seed=seed,
verbose=verbose,
.transform=FALSE,
...
)
}
)
setMethod(
"pfilter",
signature=signature(object="pfilterd.pomp"),
function (object, params, Np, tol, ...) {
if (missing(params)) params <- coef(object)
if (missing(Np)) Np <- object@Np
if (missing(tol)) tol <- object@tol
pfilter(
object=as(object,"pomp"),
params=params,
Np=Np,
tol=tol,
...
)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.