Description Usage Arguments Details Value Note Author(s) See Also Examples
View source: R/jacobian.full.R
Given a vector of (state) variables, and a function that estimates one function value for each (state) variable (e.g. the rate of change), estimates the Jacobian matrix (d(f(x))/d(x))
Assumes a full and square Jacobian matrix
1 2 | jacobian.full(y, func, dy = NULL, time = 0, parms = NULL,
pert = 1e-8, ...)
|
y |
(state) variables, a vector; if |
func |
function that calculates one function value for each element
of |
dy |
reference function value; if not specified, it will be estimated
by calling |
time |
time, passed to function |
parms |
parameter values, passed to function |
pert |
numerical perturbation factor; increase depending on precision of model solution. |
... |
other arguments passed to function |
The function func
that estimates the rate of change of the state
variables has to be consistent with functions called from
R-package deSolve
, which contains integration routines.
This function call is as: function(time,y,parms,...) where
y
: (state) variable values at which the Jacobian is estimated.
parms
: parameter vector - need not be used.
time
: time at which the Jacobian is estimated - in general,
time
will not be used.
...
: (optional) any other arguments.
The Jacobian is estimated numerically, by perturbing the x-values.
The square jacobian matrix; the elements on i-th row and j-th column are given by: d(f(x)_i)/d(x_j)
This function is useful for stability analysis of ODEs, which start by estimating the Jacobian at equilibrium points. The type of equilibrium then depends on the eigenvalue of the Jacobian.
Karline Soetaert <karline.soetaert@nioz.nl>
jacobian.band
, estimates the Jacobian matrix
assuming a banded structure.
hessian
, estimates the Hessian matrix.
gradient
, for a full (not necessarily square) gradient matrix
and where the function call is simpler.
uniroot.all
, to solve for all roots of one (nonlinear) equation
multiroot
, to solve n roots of n (nonlinear) equations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | ## =======================================================================
## 1. Structure of the Jacobian
## =======================================================================
mod <- function (t = 0, y, parms = NULL,...)
{
dy1<- y[1] + 2*y[2]
dy2<-3*y[1] + 4*y[2] + 5*y[3]
dy3<- 6*y[2] + 7*y[3] + 8*y[4]
dy4<- 9*y[3] +10*y[4]
return(as.list(c(dy1, dy2, dy3, dy4)))
}
jacobian.full(y = c(1, 2, 3, 4), func = mod)
## =======================================================================
## 2. Stability properties of a physical model
## =======================================================================
coriolis <- function (t, velocity, pars, f)
{
dvelx <- f*velocity[2]
dvely <- -f*velocity[1]
list(c(dvelx, dvely))
}
# neutral stability; f is coriolis parameter
Jac <- jacobian.full(y = c(velx = 0, vely = 0), func = coriolis,
parms = NULL, f = 1e-4)
print(Jac)
eigen(Jac)$values
## =======================================================================
## 3. Type of equilibrium
## =======================================================================
## From Soetaert and Herman (2009). A practical guide to ecological
## modelling. Using R as a simulation platform. Springer
eqn <- function (t, state, pars)
{
with (as.list(c(state, pars)), {
dx <- a*x + cc*y
dy <- b*y + dd*x
list(c(dx, dy))
})
}
# stable equilibrium
A <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,
parms = c(a = -0.1, b = -0.3, cc = 0, dd = 0)))$values
# unstable equilibrium
B <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,
parms = c(a = 0.2, b = 0.2, cc = 0.0, dd = 0.2)))$values
# saddle point
C <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,
parms = c(a = -0.1, b = 0.1, cc = 0, dd = 0)))$values
# neutral stability
D <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,
parms = c(a = 0, b = 0, cc = -0.1, dd = 0.1)))$values
# stable focal point
E <- eigen(jacobian.full(y = c(x = 0, y = 0), func = eqn,
parms = c(a = 0, b = -0.1, cc = -0.1, dd = 0.1)))$values
# unstable focal point
F <- eigen(jacobian.full(y = c(x = 0, y = 0), func=eqn,
parms = c(a = 0., b = 0.1, cc = 0.1, dd = -0.1)))$values
data.frame(type = c("stable", "unstable", "saddle", "neutral",
"stable focus", "unstable focus"),
eigenvalue_1 = c(A[1], B[1], C[1], D[1], E[1], F[1]),
eigenvalue_2 = c(A[2], B[2], C[2], D[2], E[2], F[2]))
## =======================================================================
## 4. Limit cycles
## =======================================================================
## From Soetaert and Herman (2009). A practical guide to ecological
## modelling. Using R as a simulation platform. Springer
eqn2 <- function (t, state, pars)
{
with (as.list(c(state, pars)),
{
dx<- a*y + e*x*(x^2+y^2-1)
dy<- b*x + f*y*(x^2+y^2-1)
list(c(dx, dy))
})
}
# stable limit cycle with unstable focus
eigen(jacobian.full(c(x = 0, y = 0), eqn2,
parms = c(a = -1, b = 1, e = -1, f = -1)))$values
# unstable limit cycle with stable focus
eigen(jacobian.full(c(x = 0, y = 0), eqn2,
parms = c(a = -1, b = 1, e = 1, f = 1)))$values
|
[,1] [,2] [,3] [,4]
[1,] 1 2 0 0
[2,] 3 4 5 0
[3,] 0 6 7 8
[4,] 0 0 9 10
velx vely
[1,] 0e+00 1e-04
[2,] -1e-04 0e+00
[1] 0+1e-04i 0-1e-04i
type eigenvalue_1 eigenvalue_2
1 stable -0.10+0.00000000i -0.30+0.00000000i
2 unstable 0.20+0.00000000i 0.20+0.00000000i
3 saddle 0.10+0.00000000i -0.10+0.00000000i
4 neutral 0.00+0.10000000i 0.00-0.10000000i
5 stable focus -0.05+0.08660254i -0.05-0.08660254i
6 unstable focus 0.05+0.08660254i 0.05-0.08660254i
[1] 1+1i 1-1i
[1] -1+1i -1-1i
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.