steady.band: Steady-state solver for ordinary differential equations;...

Description Usage Arguments Details Value Author(s) See Also Examples

Description

Estimates the steady-state condition for a system of ordinary differential equations.

Assumes a banded jacobian matrix.

Usage

1
2
3
steady.band(y, time = 0, func, parms = NULL, 
            nspec = NULL, bandup = nspec, banddown = nspec, 
            times = time, ...)

Arguments

y

the initial guess of (state) values for the ODE system, a vector. If y has a name attribute, the names will be used to label the output matrix.

time, times

time for which steady-state is wanted; the default is times=0. (note- since version 1.7, 'times' has been added as an alias to 'time').

func

either an R-function that computes the values of the derivatives in the ode system (the model defininition) at time time, or a character string giving the name of a compiled function in a dynamically loaded shared library. If func is an R-function, it must be defined as: yprime = func(t, y, parms,...). t is the current time point in the integration, y is the current estimate of the variables in the ODE system. If the initial values y has a names attribute, the names will be available inside func. parms is a vector or list of parameters; ... (optional) are any other arguments passed to the function.

The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose next elements are global values whose steady-state value is also required.

The derivatives should be specified in the same order as the state variables y.

parms

parameters passed to func.

nspec

the number of *species* (components) in the model.

bandup

the number of nonzero bands above the Jacobian diagonal.

banddown

the number of nonzero bands below the Jacobian diagonal.

...

additional arguments passed to function stode.

Details

This is the method of choice for single-species 1-D models.

For multi-species 1-D models, this method can only be used if the state variables are arranged per box, per species (e.g. A[1],B[1],A[2],B[2],A[3],B[3],.... for species A, B).

Usually a 1-D *model* function will have the species arranged as A[1],A[2],A[3],....B[1],B[2],B[3],.... in this case, use steady.1D

Value

A list containing

y

a vector with the state variable values from the last iteration during estimation of steady-state condition of the system of equations. If y has a names attribute, it will be used to label the output values.

...

the number of "global" values returned.

The output will have the attribute steady, which returns TRUE, if steady-state has been reached and the attribute precis with the precision attained during each iteration.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

steady, for a general interface to most of the steady-state solvers

steady.1D, steady.2D, steady.3D, steady-state solvers for 1-D, 2-D and 3-D partial differential equations.

stode, iterative steady-state solver for ODEs with full or banded Jacobian.

stodes, iterative steady-state solver for ODEs with arbitrary sparse Jacobian.

runsteady, steady-state solver by dynamically running to steady-state

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
## =======================================================================
## 1000 simultaneous equations, solved 6 times for different 
## values of parameter "decay"
## =======================================================================

model <- function (time, OC, parms, decay)  {
  # model of particles (OC) that sink out of the water and decay
  # exponentially declining sinking rate, maximal 100 m/day
  sink <- 100 * exp(-0.01*dist)
  
  # boundary flux; upper boundary=imposed concentration (100)
  Flux <- sink * c(100 ,OC)     
   
  # Rate of change= Flux gradient and first-order consumption
  dOC  <- -diff(Flux)/dx - decay*OC
  list(dOC, maxC = max(OC))
}

dx   <- 1                          # thickness of boxes
dist <- seq(0, 1000, by = dx)      # water depth at each modeled box interface

ss   <- NULL 
for (decay in seq(from = 0.1, to = 1.1, by = 0.2))
  ss   <- cbind(ss, steady.band(runif(1000), func = model,
                parms = NULL, nspec = 1, decay = decay)$y)  

matplot(ss, 1:1000, type = "l", lwd = 2, main = "steady.band", 
  ylim=c(1000, 0), ylab = "water depth, m", 
  xlab = "concentration of sinking particles")

legend("bottomright", legend = seq(from = 0.1, to = 1.1, by = 0.2),
   lty = 1:10, title = "decay rate", col = 1:10, lwd = 2)

## =======================================================================
## 5001 simultaneous equations: solve
## dy/dt = 0 = d2y/dx2 + 1/x*dy/dx + (1-1/(4x^2)y - sqrx(x)*cos(x),
## over the interval [1,6], with boundary conditions: y(1)=1, y(6)=-0.5
## =======================================================================

derivs <- function(t, y, parms, x, dx, N, y1, y6)  {

  # Numerical approximation of derivates:
  # d2y/dx2 = (yi+1-2yi+yi-1)/dx^2
   d2y <- (c(y[-1],y6) -2*y + c(y1,y[-N])) /dx/dx

  # dy/dx = (yi+1-yi-1)/(2dx)
   dy  <- (c(y[-1],y6) - c(y1,y[-N])) /2/dx

   res <- d2y+dy/x+(1-1/(4*x*x))*y-sqrt(x)*cos(x)
   return(list(res))
}

dx     <- 0.001
x      <- seq(1,6,by=dx)
N      <- length(x)
y  <- steady.band(y = rep(1, N), time = 0, func = derivs, x = x, dx = dx,
                  N = N, y1 = 1, y6 = -0.5, nspec = 1)$y
plot(x, y, type = "l", main = "5001 nonlinear equations - banded Jacobian")

# add the analytic solution for comparison:
xx     <- seq(1, 6, by = 0.1)
ana <- 0.0588713*cos(xx)/sqrt(xx)+1/4*sqrt(xx)*cos(xx)+
       0.740071*sin(xx)/sqrt(xx)+1/4*xx^(3/2)*sin(xx)
points(xx, ana)
legend("topright", pch = c(NA, 1), lty = c(1, NA),
       c("numeric", "analytic"))

rootSolve documentation built on Sept. 23, 2021, 3 a.m.