Description Usage Arguments Details Value Note Author(s) References See Also Examples
Given a vector of variables (x), and a function (f) that estimates one function value or a set of function values (f(x)), estimates the gradient matrix, containing, on rows i and columns j
d(f(x)_i)/d(x_j)
The gradient matrix is not necessarily square.
1 |
f |
function returning one function value, or a vector of function values. |
x |
either one value or a vector containing the x-value(s) at which the gradient matrix should be estimated. |
centered |
if |
pert |
numerical perturbation factor; increase depending on precision of model solution. |
... |
other arguments passed to function |
the function f
that estimates the function values will be called as
f(x, ...). If x
is a vector, then the first argument passed to
f
should also be a vector.
The gradient is estimated numerically, by perturbing the x-values.
The gradient matrix where the number of rows equals the length of f
and the number of columns equals the length of x
.
the elements on i-th row and j-th column contain: d((f(x))_i)/d(x_j)
gradient
can be used to calculate so-called sensitivity functions
,
that estimate the effect of parameters on output variables.
Karline Soetaert <karline.soetaert@nioz.nl>
Soetaert, K. and P.M.J. Herman (2008). A practical guide to ecological modelling - using R as a simulation platform. Springer.
jacobian.full
, for generating a full and square
gradient (jacobian) matrix and where the function call is more complex
hessian
, for generating the Hessian matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ## =======================================================================
## 1. Sensitivity analysis of the logistic differential equation
## dN/dt = r*(1-N/K)*N , N(t0)=N0.
## =======================================================================
# analytical solution of the logistic equation:
logistic <- function (x, times) {
with (as.list(x),
{
N <- K / (1+(K-N0)/N0*exp(-r*times))
return(c(N = N))
})
}
# parameters for the US population from 1900
x <- c(N0 = 76.1, r = 0.02, K = 500)
# Sensitivity function: SF: dfi/dxj at
# output intervals from 1900 to 1950
SF <- gradient(f = logistic, x, times = 0:50)
# sensitivity, scaled for the value of the parameter:
# [dfi/(dxj/xj)]= SF*x (columnise multiplication)
sSF <- (t(t(SF)*x))
matplot(sSF, xlab = "time", ylab = "relative sensitivity ",
main = "logistic equation", pch = 1:3)
legend("topleft", names(x), pch = 1:3, col = 1:3)
# mean scaled sensitivity
colMeans(sSF)
## =======================================================================
## 2. Stability of the budworm model, as a function of its
## rate of increase.
##
## Example from the book of Soetaert and Herman(2009)
## A practical guide to ecological modelling,
## using R as a simulation platform. Springer
## code and theory are explained in this book
## =======================================================================
r <- 0.05
K <- 10
bet <- 0.1
alf <- 1
# density-dependent growth and sigmoid-type mortality rate
rate <- function(x, r = 0.05) r*x*(1-x/K) - bet*x^2/(x^2+alf^2)
# Stability of a root ~ sign of eigenvalue of Jacobian
stability <- function (r) {
Eq <- uniroot.all(rate, c(0, 10), r = r)
eig <- vector()
for (i in 1:length(Eq))
eig[i] <- sign (gradient(rate, Eq[i], r = r))
return(list(Eq = Eq, Eigen = eig))
}
# bifurcation diagram
rseq <- seq(0.01, 0.07, by = 0.0001)
plot(0, xlim = range(rseq), ylim = c(0, 10), type = "n",
xlab = "r", ylab = "B*", main = "Budworm model, bifurcation",
sub = "Example from Soetaert and Herman, 2009")
for (r in rseq) {
st <- stability(r)
points(rep(r, length(st$Eq)), st$Eq, pch = 22,
col = c("darkblue", "black", "lightblue")[st$Eigen+2],
bg = c("darkblue", "black", "lightblue")[st$Eigen+2])
}
legend("topleft", pch = 22, pt.cex = 2, c("stable", "unstable"),
col = c("darkblue","lightblue"),
pt.bg = c("darkblue", "lightblue"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.