R/estfun.R

Defines functions estfun.mlogit estfun.zeroinfl estfun.hurdle estfun.nls estfun.survreg estfun.coxph estfun.clm estfun.polr estfun.rlm estfun.glm estfun.mlm estfun.lm estfun

Documented in estfun estfun.clm estfun.coxph estfun.glm estfun.hurdle estfun.lm estfun.mlm estfun.mlogit estfun.nls estfun.polr estfun.rlm estfun.survreg estfun.zeroinfl

estfun <- function(x, ...)
{
  UseMethod("estfun")
}

estfun.lm <- function(x, ...)
{
  xmat <- model.matrix(x)
  xmat <- naresid(x$na.action, xmat)
  if(any(alias <- is.na(coef(x)))) xmat <- xmat[, !alias, drop = FALSE]
  wts <- weights(x)
  if(is.null(wts)) wts <- 1
  res <- residuals(x)
  rval <- as.vector(res) * wts * xmat
  attr(rval, "assign") <- NULL
  attr(rval, "contrasts") <- NULL
  if(is.zoo(res)) rval <- zoo(rval, index(res), attr(res, "frequency"))
  if(is.ts(res)) rval <- ts(rval, start = start(res), frequency = frequency(res))
  return(rval)
}

estfun.mlm <- function(x, ...)
{
  xmat <- model.matrix(x)
  xmat <- naresid(x$na.action, xmat)
  wts <- weights(x)
  if(is.null(wts)) wts <- 1
  res <- residuals(x)
  cf <- coef(x)
  rval <- lapply(1:NCOL(res), function(i) {
    rv <- as.vector(res[,i]) * wts * xmat
    colnames(rv) <- paste(colnames(cf)[i], colnames(rv), sep = ":")
    rv
  })  
  rval <- do.call("cbind", rval)
  attr(rval, "assign") <- NULL
  attr(rval, "contrasts") <- NULL
  if(any(alias <- is.na(as.vector(cf)))) rval <- rval[, !alias, drop = FALSE]
  if(is.zoo(res)) rval <- zoo(rval, index(res), attr(res, "frequency"))
  if(is.ts(res)) rval <- ts(rval, start = start(res), frequency = frequency(res))
  return(rval)
}

estfun.glm <- function(x, ...)
{
  xmat <- model.matrix(x)
  xmat <- naresid(x$na.action, xmat)
  if(any(alias <- is.na(coef(x)))) xmat <- xmat[, !alias, drop = FALSE]
  wres <- as.vector(residuals(x, "working")) * weights(x, "working")
  dispersion <- if(substr(x$family$family, 1, 17) %in% c("poisson", "binomial", "Negative Binomial")) 1
    else sum(wres^2, na.rm = TRUE)/sum(weights(x, "working"), na.rm = TRUE)
  rval <- wres * xmat / dispersion
  attr(rval, "assign") <- NULL
  attr(rval, "contrasts") <- NULL
  res <- residuals(x, type = "pearson")
  if(is.ts(res)) rval <- ts(rval, start = start(res), frequency = frequency(res))
  if(is.zoo(res)) rval <- zoo(rval, index(res), attr(res, "frequency"))
  return(rval)
}

estfun.rlm <- function(x, ...)
{
  xmat <- model.matrix(x)
  xmat <- naresid(x$na.action, xmat)
  wts <- weights(x)
  if(is.null(wts)) wts <- 1
  res <- residuals(x)
  psi <- function(z) x$psi(z) * z
  rval <- as.vector(psi(res/x$s)) * wts * xmat
  attr(rval, "assign") <- NULL
  attr(rval, "contrasts") <- NULL
  if(is.ts(res)) rval <- ts(rval, start = start(res), frequency = frequency(res))
  if(is.zoo(res)) rval <- zoo(rval, index(res), attr(res, "frequency"))
  return(rval)
}

estfun.polr <- function(x, ...)
{
  ## link processing
  mueta <- x$method
  if(mueta == "logistic") mueta <- "logit"
  mueta <- make.link(mueta)$mu.eta
  
  ## observations
  xmat <- model.matrix(x)[, -1L, drop = FALSE]
  n <- nrow(xmat)
  k <- ncol(xmat)
  m <- length(x$zeta)
  mf <- model.frame(x)
  y <- as.numeric(model.response(mf))
  w <- model.weights(mf)
  if(is.null(w)) w <- rep(1, n)

  ## estimates  
  prob <- x$fitted.values[cbind(1:n, y)]
  xb <- if(k >= 1L) as.vector(xmat %*% x$coefficients) else rep(0, n)
  zeta <- x$zeta
  lp <- cbind(0, mueta(matrix(zeta, nrow = n, ncol = m, byrow = TRUE) - xb), 0)

  ## estimating functions
  rval <- matrix(0, nrow = n, ncol = k + m + 2L)
  if(k >= 1L) rval[, 1L:k] <- (-xmat * as.vector(lp[cbind(1:n, y + 1L)] - lp[cbind(1:n, y)]))
  rval[cbind(1:n, k + y)] <- -as.vector(lp[cbind(1:n, y)])
  rval[cbind(1:n, k + y + 1L)] <- as.vector(lp[cbind(1:n, y + 1L)])
  rval <- rval[, -c(k + 1L, k + m + 2L), drop = FALSE]
  rval <- w/prob * rval

  ## dimnames and return
  dimnames(rval) <- list(rownames(xmat), c(colnames(xmat), names(x$zeta)))
  return(rval)
}

estfun.clm <- function(x, ...)
{
  if(x$threshold != "flexible") stop("only flexible thresholds implemented at the moment")

  ## link processing
  mueta <- make.link(x$link)$mu.eta
  
  ## observations
  xmat <- model.matrix(x)
  if(length(xmat) > 1L) stop("estimating functions for scale regression not implemented yet")
  xmat <- xmat$X[, -1L, drop = FALSE]
  n <- nrow(xmat)
  k <- ncol(xmat)
  m <- length(x$alpha)
  mf <- model.frame(x)
  y <- as.numeric(model.response(mf))
  w <- model.weights(mf)
  if(is.null(w)) w <- rep(1, n)

  ## estimates  
  prob <- x$fitted.values
  xb <- if(k >= 1L) as.vector(xmat %*% x$beta) else rep(0, n)
  zeta <- x$alpha
  lp <- cbind(0, mueta(matrix(zeta, nrow = n, ncol = m, byrow = TRUE) - xb), 0)

  ## estimating functions
  rval <- matrix(0, nrow = n, ncol = k + m + 2L)
  if(k >= 1L) rval[, 1L:k] <- (-xmat * as.vector(lp[cbind(1:n, y + 1L)] - lp[cbind(1:n, y)]))
  rval[cbind(1:n, k + y)] <- -as.vector(lp[cbind(1:n, y)])
  rval[cbind(1:n, k + y + 1L)] <- as.vector(lp[cbind(1:n, y + 1L)])
  rval <- rval[, -c(k + 1L, k + m + 2L), drop = FALSE]
  rval <- w/prob * rval

  ## dimnames, re-order and return
  dimnames(rval) <- list(rownames(xmat), c(colnames(xmat), names(x$alpha)))
  ix <- if(k >= 1L) c((k + 1L):(k + m), 1L:k) else 1L:m
  return(rval[, ix, drop = FALSE])
}

estfun.coxph <- function(x, ...)
{
  wts <- x$weights
  if(is.null(wts)) wts <- 1
  wts * residuals(x, type = "score", ...)
}

estfun.survreg <- function(x, ...)
{
  mf <- model.frame(x)
  xmat <- model.matrix(terms(x), mf)
  wts <- model.weights(mf)
  if(is.null(wts)) wts <- 1
  res <- residuals(x, type = "matrix")
  rval <- as.vector(res[,"dg"]) * wts * xmat
  if(NROW(x$var) > length(coef(x))) {
    rval <- cbind(rval, res[,"ds"])
    colnames(rval)[NCOL(rval)] <- "Log(scale)"
  }
  attr(rval, "assign") <- NULL
  
  return(rval)
}

estfun.nls <- function(x, ...)
{
  rval <- as.vector(x$m$resid()) * x$m$gradient()
  colnames(rval) <- names(coef(x))
  rval
}

estfun.hurdle <- function(x, ...) {
  ## extract data
  Y <- if(is.null(x$y)) model.response(model.frame(x)) else x$y
  X <- model.matrix(x, model = "count")
  Z <- model.matrix(x, model = "zero")
  beta <- coef(x, model = "count")
  gamma <- coef(x, model = "zero")
  fulltheta <- x$theta

  offset <- x$offset
  if(is.list(offset)) {
    offsetx <- offset$count
    offsetz <- offset$zero
  } else {
    offsetx <- offset
    offsetz <- NULL
  }
  if(is.null(offsetx)) offsetx <- 0
  if(is.null(offsetz)) offsetz <- 0
  if(x$dist$zero == "binomial") linkobj <- make.link(x$link)
  wts <- weights(x)
  if(is.null(wts)) wts <- 1
  Y1 <- Y > 0

  ## count component: working residuals
  eta <- as.vector(X %*% beta + offsetx)
  mu <- exp(eta)
  theta <- fulltheta["count"]

  wres_count <- as.numeric(Y > 0) * switch(x$dist$count,
    "poisson" = {
      (Y - mu) - exp(ppois(0, lambda = mu, log.p = TRUE) -
        ppois(0, lambda = mu, lower.tail = FALSE, log.p = TRUE) + eta)    
    },
    "geometric" = {
      (Y - mu * (Y + 1)/(mu + 1)) - exp(pnbinom(0, mu = mu, size = 1, log.p = TRUE) -
        pnbinom(0, mu = mu, size = 1, lower.tail = FALSE, log.p = TRUE) - log(mu + 1) + eta)
    },
    "negbin" = {
      (Y - mu * (Y + theta)/(mu + theta)) - exp(pnbinom(0, mu = mu, size = theta, log.p = TRUE) -
        pnbinom(0, mu = mu, size = theta, lower.tail = FALSE, log.p = TRUE) +
	log(theta) - log(mu + theta) + eta)
    })
  
  ## zero component: working residuals
  eta <- as.vector(Z %*% gamma + offsetz)
  mu <- if(x$dist$zero == "binomial") linkobj$linkinv(eta) else exp(eta)
  theta <- fulltheta["zero"]

  wres_zero <- switch(x$dist$zero,
    "poisson" = {
      ifelse(Y1, exp(ppois(0, lambda = mu, log.p = TRUE) -
        ppois(0, lambda = mu, lower.tail = FALSE, log.p = TRUE) + eta), -mu)
    },
    "geometric" = {
      ifelse(Y1, exp(pnbinom(0, mu = mu, size = 1, log.p = TRUE) -
        pnbinom(0, mu = mu, size = 1, lower.tail = FALSE, log.p = TRUE) - log(mu + 1) + eta), -mu/(mu + 1))
    },
    "negbin" = {
      ifelse(Y1, exp(pnbinom(0, mu = mu, size = theta, log.p = TRUE) -
        pnbinom(0, mu = mu, size = theta, lower.tail = FALSE, log.p = TRUE) +
        log(theta) - log(mu + theta) + eta), -mu * theta/(mu + theta))
    },
    "binomial" = {
      ifelse(Y1, 1/mu, -1/(1-mu)) * linkobj$mu.eta(eta)
    })

  ## compute gradient from data
  rval <- cbind(wres_count * wts * X, wres_zero * wts * Z)
  colnames(rval) <- names(coef(x))
  rownames(rval) <- rownames(X)
  return(rval)
}

estfun.zeroinfl <- function(x, ...) {
  ## extract data
  Y <- if(is.null(x$y)) model.response(model.frame(x)) else x$y
  X <- model.matrix(x, model = "count")
  Z <- model.matrix(x, model = "zero")
  beta <- coef(x, model = "count")
  gamma <- coef(x, model = "zero")
  theta <- x$theta

  offset <- x$offset
  if(is.list(offset)) {
    offsetx <- offset$count
    offsetz <- offset$zero
  } else {
    offsetx <- offset
    offsetz <- NULL
  }
  if(is.null(offsetx)) offsetx <- 0
  if(is.null(offsetz)) offsetz <- 0
  linkobj <- make.link(x$link)
  wts <- weights(x)
  if(is.null(wts)) wts <- 1
  Y1 <- Y > 0

  eta <- as.vector(X %*% beta + offsetx)
  mu <- exp(eta)
  etaz <- as.vector(Z %*% gamma + offsetz)
  muz <- linkobj$linkinv(etaz)

  ## density for y = 0
  clogdens0 <- switch(x$dist,
    "poisson" = -mu,
    "geometric" = dnbinom(0, size = 1, mu = mu, log = TRUE),
    "negbin" = dnbinom(0, size = theta, mu = mu, log = TRUE))
  dens0 <- muz * (1 - as.numeric(Y1)) + exp(log(1 - muz) + clogdens0)

  ## working residuals  
  wres_count <- switch(x$dist,
    "poisson" = ifelse(Y1, Y - mu, -exp(-log(dens0) + log(1 - muz) + clogdens0 + log(mu))),
    "geometric" = ifelse(Y1, Y - mu * (Y + 1)/(mu + 1), -exp(-log(dens0) +
      log(1 - muz) + clogdens0 - log(mu + 1) + log(mu))),
    "negbin" = ifelse(Y1, Y - mu * (Y + theta)/(mu + theta), -exp(-log(dens0) +
      log(1 - muz) + clogdens0 + log(theta) - log(mu + theta) + log(mu))))
  wres_zero <- ifelse(Y1, -1/(1-muz) * linkobj$mu.eta(etaz),
    (linkobj$mu.eta(etaz) - exp(clogdens0) * linkobj$mu.eta(etaz))/dens0)

  ## compute gradient from data
  rval <- cbind(wres_count * wts * X, wres_zero * wts * Z)
  colnames(rval) <- names(coef(x))
  rownames(rval) <- rownames(X)
  return(rval)
}

estfun.mlogit <- function(x, ...)
{
  x$gradient
}

Try the sandwich package in your browser

Any scripts or data that you put into this service are public.

sandwich documentation built on Sept. 16, 2024, 3:08 a.m.