Nothing
########################################################
# #
# Latent Class Model (LCM 2C) normal - half normal #
# #
########################################################
# Log-likelihood ----------
cLCMhalfnormlike2C <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, Zvar, nZHvar) {
beta1 <- parm[1:(nXvar)]
delta1 <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi1 <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
beta2 <- parm[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
nuZUvar + nvZVvar)]
delta2 <- parm[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + nvZVvar)]
phi2 <- parm[(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar)]
theta <- parm[(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)]
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- Yvar - as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- Yvar - as.numeric(crossprod(matrix(beta2), t(Xvar)))
mustar1 <- -exp(Wu1) * S * epsilon1/(exp(Wu1) + exp(Wv1))
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(exp(Wu1) + exp(Wv1)))
mustar2 <- -exp(Wu2) * S * epsilon2/(exp(Wu2) + exp(Wv2))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(exp(Wu2) + exp(Wv2)))
Pi1 <- 2/sqrt(exp(Wu1) + exp(Wv1)) * dnorm(S * epsilon1/sqrt(exp(Wu1) +
exp(Wv1))) * pnorm(mustar1/sigmastar1)
Pi2 <- 2/sqrt(exp(Wu2) + exp(Wv2)) * dnorm(S * epsilon2/sqrt(exp(Wu2) +
exp(Wv2))) * pnorm(mustar2/sigmastar2)
Probc1 <- exp(Wz)/(1 + exp(Wz))
Probc2 <- 1 - Probc1
L <- Probc1 * Pi1 + Probc2 * Pi2
ifelse(L <= 0, return(NA), return(log(L)))
}
# starting value for the log-likelihood ----------
csLCMfhalfnorm2C <- function(olsObj, epsiRes, nXvar, nuZUvar,
nvZVvar, uHvar, vHvar, Yvar, Xvar, S, Zvar, nZHvar, itermax,
printInfo, tol) {
cat("Initialization: SFA + halfnormal - normal distribution...\n")
initHalf <- maxLik(logLik = chalfnormlike, start = csthalfnorm(olsObj = olsObj,
epsiRes = epsiRes, S = S, nuZUvar = 1, uHvar = as.matrix(uHvar[,
1]), nvZVvar = 1, vHvar = as.matrix(vHvar[, 1])),
grad = cgradhalfnormlike, method = "BFGS", control = list(iterlim = itermax,
printLevel = if (printInfo) 2 else 0, reltol = tol),
nXvar = nXvar, nuZUvar = 1, nvZVvar = 1, uHvar = as.matrix(uHvar[,
1]), vHvar = as.matrix(vHvar[, 1]), Yvar = Yvar,
Xvar = Xvar, S = S)
Esti <- initHalf$estimate
StartVal <- c(Esti[1:(nXvar)], Esti[nXvar + 1], if (nuZUvar >
1) rep(0, nuZUvar - 1), Esti[nXvar + 2], if (nvZVvar >
1) rep(0, nvZVvar - 1), 0.98 * Esti[1:(nXvar)], Esti[nXvar +
1], if (nuZUvar > 1) rep(0, nuZUvar - 1), Esti[nXvar +
2], if (nvZVvar > 1) rep(0, nvZVvar - 1), rep(0, nZHvar))
names(StartVal) <- c(names(Esti)[1:nXvar], paste0("Zu_",
colnames(uHvar)), paste0("Zv_", colnames(vHvar)), names(Esti)[1:nXvar],
paste0("Zu_", colnames(uHvar)), paste0("Zv_", colnames(vHvar)),
paste0("Cl1_", colnames(Zvar)))
names(initHalf$estimate) <- c(names(Esti)[1:nXvar], paste0("Zu_",
colnames(uHvar)[1]), paste0("Zv_", colnames(vHvar)[1]))
return(list(StartVal = StartVal, initHalf = initHalf))
}
# Gradient of the likelihood function ----------
cgradLCMhalfnormlike2C <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, Zvar, nZHvar) {
beta1 <- parm[1:(nXvar)]
delta1 <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi1 <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
beta2 <- parm[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
nuZUvar + nvZVvar)]
delta2 <- parm[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + nvZVvar)]
phi2 <- parm[(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar)]
theta <- parm[(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)]
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- Yvar - as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- Yvar - as.numeric(crossprod(matrix(beta2), t(Xvar)))
sigma_sq1 <- exp(Wu1) + exp(Wv1)
sigma_sq2 <- exp(Wu2) + exp(Wv2)
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(sigma_sq1))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(sigma_sq2))
dmusig1 <- dnorm(-(S * exp(Wu1) * (epsilon1)/((sigma_sq1) *
sigmastar1)))
dmusig2 <- dnorm(-(S * exp(Wu2) * (epsilon2)/((sigma_sq2) *
sigmastar2)))
pmusig1 <- pnorm(-(S * exp(Wu1) * (epsilon1)/((sigma_sq1) *
sigmastar1)))
pmusig2 <- pnorm(-(S * exp(Wu2) * (epsilon2)/((sigma_sq2) *
sigmastar2)))
depsisq1 <- dnorm(S * (epsilon1)/sqrt(sigma_sq1))
depsisq2 <- dnorm(S * (epsilon2)/sqrt(sigma_sq2))
sigx1_1 <- (dmusig1 * depsisq1 * exp(Wu1)/sigmastar1 + S *
depsisq1 * pmusig1 * (epsilon1))
sigx1_2 <- (dmusig2 * depsisq2 * exp(Wu2)/sigmastar2 + S *
depsisq2 * pmusig2 * (epsilon2))
sqsq1 <- ((sigma_sq1) * sigmastar1)
sqsq2 <- ((sigma_sq2) * sigmastar2)
sigx2_1 <- (0.5 * ((1 - exp(Wu1)/(sigma_sq1)) * exp(Wv1)/sigmastar1) +
sigmastar1)
sigx2_2 <- (0.5 * ((1 - exp(Wu2)/(sigma_sq2)) * exp(Wv2)/sigmastar2) +
sigmastar2)
sigx3_1 <- (0.5 * ((1 - exp(Wv1)/(sigma_sq1)) * exp(Wu1)/sigmastar1) +
sigmastar1)
sigx3_2 <- (0.5 * ((1 - exp(Wv2)/(sigma_sq2)) * exp(Wu2)/sigmastar2) +
sigmastar2)
wzdeno <- (1 + exp(Wz))
prC <- (1 - exp(Wz)/wzdeno)
wzdsq1 <- (wzdeno * sqrt(sigma_sq1))
wzdsq2 <- (wzdeno * sqrt(sigma_sq2))
wzlogit <- (prC * depsisq2 * pmusig2/sqrt(sigma_sq2))
sigx4 <- (2 * wzlogit + 2 * (depsisq1 * exp(Wz) * pmusig1/wzdsq1))
sigsq_1 <- (sigx4 * sqrt(sigma_sq1))
sigsq_2 <- (sigx4 * sqrt(sigma_sq2))
wdpdsq <- (wzdeno * depsisq1 * pmusig1/wzdsq1^2)
dpepsisq <- (S * depsisq1 * pmusig1 * (epsilon1)/(sigma_sq1)^2)
sigx5 <- (wzdeno * sigx4 * (sigma_sq1) * sqrt(sigma_sq1))
sigx6 <- (S * (0.5 * dpepsisq - (1/sqsq1 - sigx2_1 * exp(Wu1)/sqsq1^2) *
dmusig1 * depsisq1) * (epsilon1)/wzdeno - 0.5 * wdpdsq)
sigx7 <- (sigx3_1 * dmusig1 * depsisq1 * exp(Wu1)/sqsq1^2 +
0.5 * dpepsisq) * (epsilon1)
s3q <- sigx4 * (sigma_sq2) * sqrt(sigma_sq2)
sigx8 <- (1/wzdsq1 - exp(Wz) * sqrt(sigma_sq1)/wzdsq1^2)
sigx9 <- sigx8 * depsisq1 * pmusig1
sigx10 <- (1/sqsq2 - sigx2_2 * exp(Wu2)/sqsq2^2)
sigx11 <- (S * depsisq2 * pmusig2 * (epsilon2)/(sigma_sq2)^2)
dpsq2 <- depsisq2 * pmusig2/(sigma_sq2)
sigx12 <- (S * (0.5 * sigx11 - sigx10 * dmusig2 * depsisq2) *
(epsilon2) - 0.5 * (dpsq2))
sigx13 <- (S * (sigx3_2 * dmusig2 * depsisq2 * exp(Wu2)/sqsq2^2 +
0.5 * sigx11) * (epsilon2) - 0.5 * (dpsq2))
sigx14 <- (prC * depsisq2 * pmusig2/wzdsq2)
sigx15 <- (2 * (sigx9) - 2 * sigx14) * exp(Wz)
sigx26 <- (S * sigx7/wzdeno - 0.5 * wdpdsq)
gradll <- cbind(sweep(Xvar, MARGIN = 1, STATS = 2 * (S *
sigx1_1 * exp(Wz)/sigx5), FUN = "*"), sweep(uHvar, MARGIN = 1,
STATS = 2 * (exp(Wu1) * exp(Wz) * sigx6/sigsq_1), FUN = "*"),
sweep(vHvar, MARGIN = 1, STATS = 2 * (exp(Wv1) * exp(Wz) *
sigx26/sigsq_1), FUN = "*"), sweep(Xvar, MARGIN = 1,
STATS = 2 * (S * prC * sigx1_2/(s3q)), FUN = "*"),
sweep(uHvar, MARGIN = 1, STATS = 2 * (prC * exp(Wu2) *
sigx12/sigsq_2), FUN = "*"), sweep(vHvar, MARGIN = 1,
STATS = 2 * (prC * exp(Wv2) * sigx13/sigsq_2), FUN = "*"),
sweep(Zvar, MARGIN = 1, STATS = sigx15/sigx4, FUN = "*"))
return(gradll)
}
# Hessian of the likelihood function ----------
chessLCMhalfnormlike2C <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, Zvar, nZHvar) {
beta1 <- parm[1:(nXvar)]
delta1 <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi1 <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
beta2 <- parm[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
nuZUvar + nvZVvar)]
delta2 <- parm[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + nvZVvar)]
phi2 <- parm[(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar)]
theta <- parm[(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)]
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- Yvar - as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- Yvar - as.numeric(crossprod(matrix(beta2), t(Xvar)))
sigma_sq1 <- exp(Wu1) + exp(Wv1)
sigma_sq2 <- exp(Wu2) + exp(Wv2)
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(sigma_sq1))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(sigma_sq2))
dmusig1 <- dnorm(-(S * exp(Wu1) * (epsilon1)/((sigma_sq1) *
sigmastar1)))
dmusig2 <- dnorm(-(S * exp(Wu2) * (epsilon2)/((sigma_sq2) *
sigmastar2)))
pmusig1 <- pnorm(-(S * exp(Wu1) * (epsilon1)/((sigma_sq1) *
sigmastar1)))
pmusig2 <- pnorm(-(S * exp(Wu2) * (epsilon2)/((sigma_sq2) *
sigmastar2)))
depsisq1 <- dnorm(S * (epsilon1)/sqrt(sigma_sq1))
depsisq2 <- dnorm(S * (epsilon2)/sqrt(sigma_sq2))
sigx1_1 <- (dmusig1 * depsisq1 * exp(Wu1)/sigmastar1 + S *
depsisq1 * pmusig1 * (epsilon1))
sigx1_2 <- (dmusig2 * depsisq2 * exp(Wu2)/sigmastar2 + S *
depsisq2 * pmusig2 * (epsilon2))
sqsq1 <- ((sigma_sq1) * sigmastar1)
sqsq2 <- ((sigma_sq2) * sigmastar2)
sigx2_1 <- (0.5 * ((1 - exp(Wu1)/(sigma_sq1)) * exp(Wv1)/sigmastar1) +
sigmastar1)
sigx2_2 <- (0.5 * ((1 - exp(Wu2)/(sigma_sq2)) * exp(Wv2)/sigmastar2) +
sigmastar2)
sigx3_1 <- (0.5 * ((1 - exp(Wv1)/(sigma_sq1)) * exp(Wu1)/sigmastar1) +
sigmastar1)
sigx3_2 <- (0.5 * ((1 - exp(Wv2)/(sigma_sq2)) * exp(Wu2)/sigmastar2) +
sigmastar2)
wzdeno <- (1 + exp(Wz))
prC <- (1 - exp(Wz)/wzdeno)
wzdsq1 <- (wzdeno * sqrt(sigma_sq1))
wzdsq2 <- (wzdeno * sqrt(sigma_sq2))
wzlogit <- (prC * depsisq2 * pmusig2/sqrt(sigma_sq2))
sigx4 <- (2 * wzlogit + 2 * (depsisq1 * exp(Wz) * pmusig1/wzdsq1))
sigsq_1 <- (sigx4 * sqrt(sigma_sq1))
sigsq_2 <- (sigx4 * sqrt(sigma_sq2))
wdpdsq <- (wzdeno * depsisq1 * pmusig1/wzdsq1^2)
dpepsisq <- (S * depsisq1 * pmusig1 * (epsilon1)/(sigma_sq1)^2)
sigx5 <- (wzdeno * sigx4 * (sigma_sq1) * sqrt(sigma_sq1))
sigx6 <- (S * (0.5 * dpepsisq - (1/sqsq1 - sigx2_1 * exp(Wu1)/sqsq1^2) *
dmusig1 * depsisq1) * (epsilon1)/wzdeno - 0.5 * wdpdsq)
sigx7 <- (sigx3_1 * dmusig1 * depsisq1 * exp(Wu1)/sqsq1^2 +
0.5 * dpepsisq) * (epsilon1)
s3q <- sigx4 * (sigma_sq2) * sqrt(sigma_sq2)
sigx8 <- (1/wzdsq1 - exp(Wz) * sqrt(sigma_sq1)/wzdsq1^2)
sigx9 <- sigx8 * depsisq1 * pmusig1
sigx10 <- (1/sqsq2 - sigx2_2 * exp(Wu2)/sqsq2^2)
sigx11 <- (S * depsisq2 * pmusig2 * (epsilon2)/(sigma_sq2)^2)
dpsq2 <- depsisq2 * pmusig2/(sigma_sq2)
sigx12 <- (S * (0.5 * sigx11 - sigx10 * dmusig2 * depsisq2) *
(epsilon2) - 0.5 * (dpsq2))
sigx13 <- (S * (sigx3_2 * dmusig2 * depsisq2 * exp(Wu2)/sqsq2^2 +
0.5 * sigx11) * (epsilon2) - 0.5 * (dpsq2))
sigx14 <- (prC * depsisq2 * pmusig2/wzdsq2)
sigx15 <- (2 * (sigx9) - 2 * sigx14) * exp(Wz)
sigx16 <- (S * (dmusig1 * exp(Wu1)/sigmastar1 + S * pmusig1 *
(epsilon1)) * (epsilon1)/(sigma_sq1) - pmusig1)
wvsq1 <- exp(Wv1)/(sigma_sq1)
wusq1 <- exp(Wu1)/(sigma_sq1)
sigx17 <- (S * pmusig1 * (epsilon1)/(sigma_sq1)^2)
wvsq2 <- exp(Wv2)/(sigma_sq2)
sigx18 <- (0.5 * sigx16 - 0.5 * pmusig1) * depsisq1/(sigma_sq1)
sigx19 <- 0.5 * (wzdeno * sigx1_1/(wzdsq1^2 * (sigma_sq1)))
sigx20 <- 0.5 * (S * depsisq1 * (S * (0.5 * sigx17 - (1/sqsq1 -
sigx2_1 * exp(Wu1)/sqsq1^2) * dmusig1) * (epsilon1) -
2 * (pmusig1/(sigma_sq1))) * (epsilon1)/(sigma_sq1)^2)
sigx21 <- 0.5 * (wzdeno * depsisq2 * pmusig2/wzdsq2^2)
sigx22 <- (sigx3_2 * dmusig2 * depsisq2 * exp(Wu2)/sqsq2^2 +
0.5 * sigx11)
sigx23 <- (0.5 * sigx11 - sigx10 * dmusig2 * depsisq2)
sigx24 <- 0.5 * ((S * sigx23 * (epsilon2) - dpsq2)/(sigma_sq2))
sigx25 <- (S * (dmusig2 * exp(Wu2)/sigmastar2 + S * pmusig2 *
(epsilon2)) * (epsilon2)/(sigma_sq2) - pmusig2)
sigx26 <- (S * sigx7/wzdeno - 0.5 * wdpdsq)
wusq2 <- exp(Wu2)/(sigma_sq2)
sigx27 <- depsisq2 * (epsilon2)^2/(sigma_sq2)^2
sigx28 <- 0.5 * (wzdeno * (S * (0.5 * dpepsisq - (1/sqsq1 -
sigx2_1 * exp(Wu1)/sqsq1^2) * dmusig1 * depsisq1) * (epsilon1) -
wzdeno^2 * depsisq1 * pmusig1/wzdsq1^2)/wzdsq1^2)
sigx29 <- dmusig1 * (depsisq1 * exp(Wu1)/exp(Wv1) + depsisq1) *
exp(Wu1) * (epsilon1)
wusqx2 <- exp(Wu1)/sqsq1^2
sigx30 <- 1/sqsq1 - sigx2_1 * wusqx2
sigx31 <- (sigx30) * dmusig1 * depsisq1
sigx32 <- dmusig2 * (depsisq2 * exp(Wu2)/exp(Wv2) + depsisq2) *
exp(Wu2) * (epsilon2)
sigx33 <- (0.5 * (sigx4/sqrt(sigma_sq2)) + 2 * (prC * sigx12))
sigx34 <- 0.5 * (S * pmusig2 * (epsilon2)/(sigma_sq2)^2)
sigx35 <- 0.5 * (S * depsisq2 * (S * (sigx34 - sigx10 * dmusig2) *
(epsilon2) - 2 * (pmusig2/(sigma_sq2))) * (epsilon2)/(sigma_sq2)^2)
sigx36 <- (0.5 * (sigx4/sqrt(sigma_sq1)) + 2 * (exp(Wz) *
sigx6))
hessll <- matrix(nrow = 2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
nZHvar, ncol = 2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
nZHvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = 2 * (S^2 * ((depsisq1 * sigx16 + S * sigx29/sqsq1)/sigx5 -
2 * (sigx1_1^2 * exp(Wz)/sigx5^2)) * exp(Wz)), FUN = "*"),
Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = 2 * (S * (((sigx31 + S * (sigx18 -
S * (sigx30) * dmusig1 * (depsisq1 * exp(Wu1)/exp(Wv1) +
depsisq1) * (epsilon1)) * (epsilon1)/(sigma_sq1))/wzdeno -
sigx19)/sigsq_1 - 2 * (sigx1_1 * exp(Wz) * sigx6/(sigsq_1^2 *
wzdeno * (sigma_sq1)))) * exp(Wu1) * exp(Wz)), FUN = "*"),
uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar +
nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = 2 *
(S * (((S * (sigx18 + S * sigx3_1 * sigx29/sqsq1^2) *
(epsilon1)/(sigma_sq1) - sigx3_1 * dmusig1 * depsisq1 *
wusqx2)/wzdeno - sigx19)/sigsq_1 - 2 * (sigx1_1 *
exp(Wz) * sigx26/(sigsq_1^2 * wzdeno * (sigma_sq1)))) *
exp(Wv1) * exp(Wz)), FUN = "*"), vHvar)
hessll[1:nXvar, (nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = -(4 * (S^2 * prC * sigx1_1 * sigx1_2 * (sigma_sq2) *
exp(Wz) * sqrt(sigma_sq2)/((s3q)^2 * wzdeno * (sigma_sq1) *
sqrt(sigma_sq1)))), FUN = "*"), Xvar)
hessll[1:nXvar, (2 * nXvar + nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = -(4 * (S * prC * sigx1_1 * exp(Wu2) *
exp(Wz) * sigx12 * sqrt(sigma_sq2)/(sigsq_2^2 * wzdeno *
(sigma_sq1) * sqrt(sigma_sq1)))), FUN = "*"), uHvar)
hessll[1:nXvar, (2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = -(4 * (S * prC * sigx1_1 * exp(Wv2) *
exp(Wz) * sigx13 * sqrt(sigma_sq2)/(sigsq_2^2 * wzdeno *
(sigma_sq1) * sqrt(sigma_sq1)))), FUN = "*"), vHvar)
hessll[1:nXvar, (2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * (2 * sigx8 - 2 * (sigx15/(wzdeno *
sigx4 * sqrt(sigma_sq1)))) * sigx1_1 * exp(Wz)/(sigx4 *
(sigma_sq1)), FUN = "*"), Zvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = 2 *
(((exp(Wu1) * (S * (sigx20 - (0.5 * (S^2 * (sigx30) *
depsisq1 * (epsilon1)^2/(sigma_sq1)^2) - (((0.5 *
(wusq1) + 1 - 0.5 * (0.5 * (1 - wusq1) + wusq1)) *
(1 - wusq1) * exp(Wv1)/sigmastar1 + (2 - 2 * (sigx2_1^2 *
exp(Wu1) * (sigma_sq1)/sqsq1^2)) * sigmastar1)/sqsq1^2 +
S^2 * (sigx30)^2 * exp(Wu1) * (epsilon1)^2/sqsq1) *
depsisq1) * dmusig1) * (epsilon1)/wzdeno - sigx28) +
S * (0.5 * dpepsisq - sigx31) * (epsilon1)/wzdeno -
0.5 * wdpdsq)/sigsq_1 - sigx36 * exp(Wu1) * sigx6/sigsq_1^2) *
exp(Wu1) * exp(Wz)), FUN = "*"), uHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar +
1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = 2 * (((S * (((((0.5 * ((1 - wusq1) *
exp(Wv1)) - S^2 * sigx3_1 * (sigx30) * exp(Wu1) *
(epsilon1)^2)/(sigma_sq1) + 0.5 * ((wusq1 - 1) *
wvsq1 + 1 - 0.5 * ((1 - wusq1) * (1 - wvsq1)))) *
depsisq1/sigmastar1 + 0.5 * (S^2 * sigx3_1 * depsisq1 *
(epsilon1)^2/(sigma_sq1)^2)) * exp(Wu1) + sigx3_1 *
(1 - 2 * (sigx2_1 * exp(Wu1) * (sigma_sq1) * sigmastar1/sqsq1^2)) *
depsisq1) * dmusig1/sqsq1^2 + sigx20) * (epsilon1)/wzdeno -
sigx28)/sigsq_1 - sigx36 * sigx26/sigsq_1^2) * exp(Wu1) *
exp(Wv1) * exp(Wz)), FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar +
nvZVvar + 1):(2 * nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = -(4 * (S * prC * sigx1_2 * exp(Wu1) *
(sigma_sq2) * exp(Wz) * sigx6 * sqrt(sigma_sq2)/((s3q)^2 *
sqrt(sigma_sq1)))), FUN = "*"), Xvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (2 * nXvar + nuZUvar +
nvZVvar + 1):(2 * nXvar + 2 * nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = -(4 * (prC * exp(Wu1) * exp(Wu2) *
exp(Wz) * sigx6 * sigx12 * sqrt(sigma_sq2)/(sigsq_2^2 *
sqrt(sigma_sq1)))), FUN = "*"), uHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (2 * nXvar + 2 * nuZUvar +
nvZVvar + 1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = -(4 * (prC * exp(Wu1) * exp(Wv2) *
exp(Wz) * sigx13 * sigx6 * sqrt(sigma_sq2)/(sigsq_2^2 *
sqrt(sigma_sq1)))), FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (2 * nXvar + 2 * nuZUvar +
2 * nvZVvar + 1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
nZHvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = (2 *
((0.5 * (S^2 * sigx8 * depsisq1 * (epsilon1)^2/(sigma_sq1)^2) -
((0.5/sqrt(sigma_sq1) - wzdeno^2 * sqrt(sigma_sq1)/wzdsq1^2) *
exp(Wz) + 0.5 * (wzdeno/sqrt(sigma_sq1))) * depsisq1/wzdsq1^2) *
pmusig1 - S * sigx8 * sigx31 * (epsilon1)) - 2 *
(sigx15 * sigx6/sigsq_1)) * exp(Wu1) * exp(Wz)/sigx4,
FUN = "*"), Zvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = 2 * (((S * ((((0.5 * (wvsq1) - 0.5 *
(0.5 * (1 - wvsq1) + wvsq1)) * (1 - wvsq1) + S^2 *
sigx3_1^2 * exp(Wu1) * exp(Wv1) * (epsilon1)^2/(sqsq1^2 *
(sigma_sq1))) * depsisq1 * exp(Wu1)/sigmastar1 +
((0.5 * (S^2 * depsisq1 * (epsilon1)^2/(sigma_sq1)^2) -
2 * (sigx3_1 * depsisq1 * (sigma_sq1) * sigmastar1/sqsq1^2)) *
exp(Wv1) + depsisq1) * sigx3_1) * dmusig1 * wusqx2 +
S * (0.5 * (exp(Wv1) * (S * (sigx3_1 * dmusig1 *
wusqx2 + 0.5 * sigx17) * (epsilon1) - 2 * (pmusig1/(sigma_sq1)))) +
0.5 * pmusig1) * depsisq1 * (epsilon1)/(sigma_sq1)^2) *
(epsilon1)/wzdeno - (0.5 * (depsisq1 * pmusig1) +
0.5 * (exp(Wv1) * (S * sigx7 - wzdeno^2 * depsisq1 *
pmusig1/wzdsq1^2))) * wzdeno/wzdsq1^2)/sigsq_1 -
(0.5 * (sigx4/sqrt(sigma_sq1)) + 2 * (exp(Wz) * sigx26)) *
exp(Wv1) * sigx26/sigsq_1^2) * exp(Wv1) * exp(Wz)),
FUN = "*"), vHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + nuZUvar +
nvZVvar)] <- crossprod(sweep(vHvar, MARGIN = 1, STATS = -(4 *
(S * prC * sigx1_2 * (sigma_sq2) * exp(Wv1) * exp(Wz) *
sigx26 * sqrt(sigma_sq2)/((s3q)^2 * sqrt(sigma_sq1)))),
FUN = "*"), Xvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + 2 *
nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar, MARGIN = 1,
STATS = -(4 * (prC * exp(Wu2) * exp(Wv1) * exp(Wz) *
sigx26 * sigx12 * sqrt(sigma_sq2)/(sigsq_2^2 * sqrt(sigma_sq1)))),
FUN = "*"), uHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = -(4 * (prC * exp(Wv1) * exp(Wv2) *
exp(Wz) * sigx26 * sigx13 * sqrt(sigma_sq2)/(sigsq_2^2 *
sqrt(sigma_sq1)))), FUN = "*"), vHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + 2 * nvZVvar + nZHvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = (2 * ((0.5 * (S^2 * sigx8 * depsisq1 *
(epsilon1)^2/(sigma_sq1)^2) - ((0.5/sqrt(sigma_sq1) -
wzdeno^2 * sqrt(sigma_sq1)/wzdsq1^2) * exp(Wz) +
0.5 * (wzdeno/sqrt(sigma_sq1))) * depsisq1/wzdsq1^2) *
pmusig1 + S * sigx3_1 * sigx8 * dmusig1 * depsisq1 *
exp(Wu1) * (epsilon1)/sqsq1^2) - 2 * (sigx15 * sigx26/sigsq_1)) *
exp(Wv1) * exp(Wz)/sigx4, FUN = "*"), Zvar)
hessll[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + nuZUvar +
nvZVvar), (nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = 2 * (S^2 * ((depsisq2 * sigx25 + S * sigx32/sqsq2)/(s3q) -
2 * (prC * sigx1_2^2/(s3q)^2)) * prC), FUN = "*"),
Xvar)
hessll[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + nuZUvar +
nvZVvar), (2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = 2 * (S * ((sigx10 * dmusig2 * depsisq2 + (S *
((0.5 * sigx25 - 0.5 * pmusig2) * depsisq2/(sigma_sq2) -
S * sigx10 * dmusig2 * (depsisq2 * exp(Wu2)/exp(Wv2) +
depsisq2) * (epsilon2)) * (epsilon2) - 0.5 *
(sigx1_2/(sigma_sq2)))/(sigma_sq2))/sigsq_2 - 2 *
(prC * sigx1_2 * sigx12/(sigsq_2^2 * (sigma_sq2)))) *
prC * exp(Wu2)), FUN = "*"), uHvar)
hessll[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + nuZUvar +
nvZVvar), (2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = 2 * (S * (((S * ((0.5 * sigx25 -
0.5 * pmusig2) * depsisq2/(sigma_sq2) + S * sigx3_2 *
sigx32/sqsq2^2) * (epsilon2) - 0.5 * (sigx1_2/(sigma_sq2)))/(sigma_sq2) -
sigx3_2 * dmusig2 * depsisq2 * exp(Wu2)/sqsq2^2)/sigsq_2 -
2 * (prC * sigx1_2 * sigx13/(sigsq_2^2 * (sigma_sq2)))) *
prC * exp(Wv2)), FUN = "*"), vHvar)
hessll[(nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + nuZUvar +
nvZVvar), (2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 *
nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = -(S * prC * (2 * ((2 * (sigx9) -
2 * sigx14)/sigx4) + 2/wzdeno) * sigx1_2 * exp(Wz)/(s3q)),
FUN = "*"), Zvar)
hessll[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + 2 *
nuZUvar + nvZVvar), (2 * nXvar + nuZUvar + nvZVvar +
1):(2 * nXvar + 2 * nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = 2 * (((exp(Wu2) * (S * (sigx35 -
(0.5 * (S^2 * sigx10 * sigx27) - (((0.5 * (wusq2) +
1 - 0.5 * (0.5 * (1 - wusq2) + wusq2)) * (1 -
wusq2) * exp(Wv2)/sigmastar2 + (2 - 2 * (sigx2_2^2 *
exp(Wu2) * (sigma_sq2)/sqsq2^2)) * sigmastar2)/sqsq2^2 +
S^2 * sigx10^2 * exp(Wu2) * (epsilon2)^2/sqsq2) *
depsisq2) * dmusig2) * (epsilon2) - sigx24) +
S * sigx23 * (epsilon2) - 0.5 * (dpsq2))/sigsq_2 -
sigx33 * exp(Wu2) * sigx12/sigsq_2^2) * prC * exp(Wu2)),
FUN = "*"), uHvar)
hessll[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + 2 *
nuZUvar + nvZVvar), (2 * nXvar + 2 * nuZUvar + nvZVvar +
1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = 2 * (((S * (((((0.5 * ((1 - wusq2) *
exp(Wv2)) - S^2 * sigx3_2 * sigx10 * exp(Wu2) * (epsilon2)^2)/(sigma_sq2) +
0.5 * ((wusq2 - 1) * wvsq2 + 1 - 0.5 * ((1 - wusq2) *
(1 - wvsq2)))) * depsisq2/sigmastar2 + 0.5 *
(S^2 * sigx3_2 * sigx27)) * exp(Wu2) + sigx3_2 *
(1 - 2 * (sigx2_2 * exp(Wu2) * (sigma_sq2) * sigmastar2/sqsq2^2)) *
depsisq2) * dmusig2/sqsq2^2 + sigx35) * (epsilon2) -
sigx24)/sigsq_2 - sigx33 * sigx13/sigsq_2^2) * prC *
exp(Wu2) * exp(Wv2)), FUN = "*"), vHvar)
hessll[(2 * nXvar + nuZUvar + nvZVvar + 1):(2 * nXvar + 2 *
nuZUvar + nvZVvar), (2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + nZHvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = -(prC * (2 * ((2 * (sigx9) - 2 *
sigx14) * sigx12/sigx4) + 2 * (S * sigx23 * (epsilon2)/wzdeno -
sigx21)) * exp(Wu2) * exp(Wz)/sigsq_2), FUN = "*"),
Zvar)
hessll[(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + 2 * nvZVvar), (2 * nXvar + 2 * nuZUvar +
nvZVvar + 1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = 2 * (((S * ((((0.5 * (wvsq2) - 0.5 *
(0.5 * (1 - wvsq2) + wvsq2)) * (1 - wvsq2) + S^2 *
sigx3_2^2 * exp(Wu2) * exp(Wv2) * (epsilon2)^2/(sqsq2^2 *
(sigma_sq2))) * depsisq2 * exp(Wu2)/sigmastar2 +
((0.5 * (S^2 * sigx27) - 2 * (sigx3_2 * depsisq2 *
(sigma_sq2) * sigmastar2/sqsq2^2)) * exp(Wv2) +
depsisq2) * sigx3_2) * dmusig2 * exp(Wu2)/sqsq2^2 +
S * (0.5 * (exp(Wv2) * (S * (sigx3_2 * dmusig2 *
exp(Wu2)/sqsq2^2 + sigx34) * (epsilon2) - 2 *
(pmusig2/(sigma_sq2)))) + 0.5 * pmusig2) * depsisq2 *
(epsilon2)/(sigma_sq2)^2) * (epsilon2) - (0.5 *
(depsisq2 * pmusig2) + 0.5 * (exp(Wv2) * (S * sigx22 *
(epsilon2) - dpsq2)))/(sigma_sq2))/sigsq_2 - (0.5 *
(sigx4/sqrt(sigma_sq2)) + 2 * (prC * sigx13)) * exp(Wv2) *
sigx13/sigsq_2^2) * prC * exp(Wv2)), FUN = "*"),
vHvar)
hessll[(2 * nXvar + 2 * nuZUvar + nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + 2 * nvZVvar), (2 * nXvar + 2 * nuZUvar +
2 * nvZVvar + 1):(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar +
nZHvar)] <- crossprod(sweep(vHvar, MARGIN = 1, STATS = -(prC *
(2 * ((2 * (sigx9) - 2 * sigx14) * sigx13/sigx4) + 2 *
(S * sigx22 * (epsilon2)/wzdeno - sigx21)) * exp(Wv2) *
exp(Wz)/sigsq_2), FUN = "*"), Zvar)
hessll[(2 * nXvar + 2 * nuZUvar + 2 * nvZVvar + 1):(2 * nXvar +
2 * nuZUvar + 2 * nvZVvar + nZHvar), (2 * nXvar + 2 *
nuZUvar + 2 * nvZVvar + 1):(2 * nXvar + 2 * nuZUvar +
2 * nvZVvar + nZHvar)] <- crossprod(sweep(Zvar, MARGIN = 1,
STATS = ((2 * (prC * (1/(wzdeno^2 * sqrt(sigma_sq2)) +
sqrt(sigma_sq2)/wzdsq2^2) * depsisq2 * pmusig2) -
((2 * (sigx9) - 2 * sigx14)^2/sigx4 + 2 * ((2 - 2 *
(wzdeno * (sigma_sq1) * exp(Wz)/wzdsq1^2)) *
depsisq1 * pmusig1 * sqrt(sigma_sq1)/wzdsq1^2))) *
exp(Wz) + 2 * (sigx9) - 2 * sigx14) * exp(Wz)/sigx4,
FUN = "*"), Zvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
LCM2ChnormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
uHvar, nuZUvar, vHvar, nvZVvar, Zvar, nZHvar, Yvar, Xvar,
method, printInfo, itermax, stepmax, tol, gradtol, hessianType,
qac, initStart, initAlg, initIter, initFactorLB, initFactorUB) {
if (!is.null(start)) {
startVal <- start
} else {
start_st <- csLCMfhalfnorm2C(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar, itermax = itermax,
tol = tol, printInfo = printInfo)
InitHalf <- start_st$initHalf
startVal <- start_st$StartVal
}
if (initStart) {
startMat <- cbind(startVal, initFactorLB * startVal,
initFactorUB * startVal)
startMat <- cbind(startMat, apply(startMat[, 2:3], 1,
which.min), apply(startMat[, 2:3], 1, which.max))
startMat <- cbind(startMat, ifelse(startMat[, 4] == 1,
startMat[, 2], startMat[, 3]), ifelse(startMat[,
5] == 1, startMat[, 2], startMat[, 3]))
initModel <- nlminb(start = startVal, objective = function(parm) -sum(cLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), gradient = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), hessian = function(parm) -chessLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar), lower = startMat[,
6], upper = startMat[, 7], control = list(iter.max = initIter,
trace = if (printInfo) 1 else 0, eval.max = initIter,
rel.tol = tol, x.tol = tol))
startVal <- initModel$par
}
startLoglik <- sum(cLCMhalfnormlike2C(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, Zvar = Zvar,
nZHvar = nZHvar))
if (method %in% c("bfgs", "bhhh", "nr", "nm")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(cLCMhalfnormlike2C(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, Zvar = Zvar,
nZHvar = nZHvar)), gr = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), hessian = 0,
control = list(trace = if (printInfo) 1 else 0, maxeval = itermax,
stepmax = stepmax, xtol = tol, grtol = gradtol)),
maxLikAlgo = maxRoutine(fn = cLCMhalfnormlike2C, grad = cgradLCMhalfnormlike2C,
hess = chessLCMhalfnormlike2C, start = startVal,
finalHessian = if (hessianType == 2) "bhhh" else TRUE,
control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar), sr1 = trust.optim(x = startVal,
fn = function(parm) -sum(cLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), gr = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), method = "SR1",
control = list(maxit = itermax, cgtol = gradtol,
stop.trust.radius = tol, prec = tol, report.level = if (printInfo) 2 else 0,
report.precision = 1L)), sparse = trust.optim(x = startVal,
fn = function(parm) -sum(cLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), gr = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), hs = function(parm) as(-chessLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar), "dgCMatrix"),
method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = mla(b = startVal,
fn = function(parm) -sum(cLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), gr = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), hess = function(parm) -chessLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar), print.info = printInfo,
maxiter = itermax, epsa = gradtol, epsb = gradtol),
nlminb = nlminb(start = startVal, objective = function(parm) -sum(cLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), gradient = function(parm) -colSums(cgradLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)), hessian = function(parm) -chessLCMhalfnormlike2C(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar), control = list(iter.max = itermax,
trace = if (printInfo) 1 else 0, eval.max = itermax,
rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradLCMhalfnormlike2C(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
names(mleObj$solution) <- names(startVal)
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chessLCMhalfnormlike2C(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)
if (method == "sr1")
mleObj$hessian <- chessLCMhalfnormlike2C(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)
}
mleObj$logL_OBS <- cLCMhalfnormlike2C(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, Zvar = Zvar,
nZHvar = nZHvar)
mleObj$gradL_OBS <- cgradLCMhalfnormlike2C(parm = mlParam,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, Zvar = Zvar, nZHvar = nZHvar)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam, if (is.null(start)) InitHalf = InitHalf))
}
# Posterior probabilities and efficiencies ----------
cLCM2Chalfnormeff <- function(object, level) {
beta1 <- object$mlParam[1:(object$nXvar)]
delta1 <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi1 <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
beta2 <- object$mlParam[(object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + object$nuZUvar +
object$nvZVvar)]
delta2 <- object$mlParam[(2 * object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar)]
phi2 <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar)]
theta <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + object$nZHvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Zvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta2), t(Xvar)))
mustar1 <- -exp(Wu1) * object$S * epsilon1/(exp(Wu1) + exp(Wv1))
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(exp(Wu1) + exp(Wv1)))
mustar2 <- -exp(Wu2) * object$S * epsilon2/(exp(Wu2) + exp(Wv2))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(exp(Wu2) + exp(Wv2)))
Pi1 <- 2/sqrt(exp(Wu1) + exp(Wv1)) * dnorm(object$S * epsilon1/sqrt(exp(Wu1) +
exp(Wv1))) * pnorm(mustar1/sigmastar1)
Pi2 <- 2/sqrt(exp(Wu2) + exp(Wv2)) * dnorm(object$S * epsilon2/sqrt(exp(Wu2) +
exp(Wv2))) * pnorm(mustar2/sigmastar2)
Probc1 <- exp(Wz)/(1 + exp(Wz))
Probc2 <- 1 - Probc1
Pcond_c1 <- Pi1 * Probc1/(Pi1 * Probc1 + Pi2 * Probc2)
Pcond_c2 <- Pi2 * Probc2/(Pi1 * Probc1 + Pi2 * Probc2)
Group_c <- ifelse(Pcond_c1 > Pcond_c2, 1, 2)
P_cond_c <- ifelse(Group_c == 1, Pcond_c1, Pcond_c2)
u_c1 <- mustar1 + sigmastar1 * dnorm(mustar1/sigmastar1)/pnorm(mustar1/sigmastar1)
u_c2 <- mustar2 + sigmastar2 * dnorm(mustar2/sigmastar2)/pnorm(mustar2/sigmastar2)
u_c <- ifelse(Group_c == 1, u_c1, u_c2)
ineff_c1 <- ifelse(Group_c == 1, u_c1, NA)
ineff_c2 <- ifelse(Group_c == 2, u_c2, NA)
if (object$logDepVar == TRUE) {
teJLMS_c <- exp(-u_c)
res <- bind_cols(Group_c = Group_c, PosteriorProb_c = P_cond_c, PosteriorProb_c1 = Pcond_c1,
PosteriorProb_c2 = Pcond_c2, PriorProb_c1 = Probc1, PriorProb_c2 = Probc2, u_c = u_c,
teJLMS_c = teJLMS_c, u_c1 = u_c1, u_c2 = u_c2, ineff_c1 = ineff_c1, ineff_c2 = ineff_c2)
} else {
res <- bind_cols(Group_c = Group_c, PosteriorProb_c = P_cond_c, PosteriorProb_c1 = Pcond_c1,
PosteriorProb_c2 = Pcond_c2, PriorProb_c1 = Probc1, PriorProb_c2 = Probc2, u_c = u_c,
u_c1 = u_c1, u_c2 = u_c2, ineff_c1 = ineff_c1, ineff_c2 = ineff_c2)
}
return(res)
}
# Marginal effects on inefficiencies ----------
cmargLCM2Chalfnorm_Eu <- function(object) {
beta1 <- object$mlParam[1:(object$nXvar)]
delta1 <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi1 <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
beta2 <- object$mlParam[(object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + object$nuZUvar +
object$nvZVvar)]
delta2 <- object$mlParam[(2 * object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar)]
phi2 <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar)]
theta <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + object$nZHvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Zvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta2), t(Xvar)))
mustar1 <- -exp(Wu1) * object$S * epsilon1/(exp(Wu1) + exp(Wv1))
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(exp(Wu1) + exp(Wv1)))
mustar2 <- -exp(Wu2) * object$S * epsilon2/(exp(Wu2) + exp(Wv2))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(exp(Wu2) + exp(Wv2)))
Pi1 <- 2/sqrt(exp(Wu1) + exp(Wv1)) * dnorm(object$S * epsilon1/sqrt(exp(Wu1) +
exp(Wv1))) * pnorm(mustar1/sigmastar1)
Pi2 <- 2/sqrt(exp(Wu2) + exp(Wv2)) * dnorm(object$S * epsilon2/sqrt(exp(Wu2) +
exp(Wv2))) * pnorm(mustar2/sigmastar2)
Probc1 <- exp(Wz)/(1 + exp(Wz))
Probc2 <- 1 - Probc1
Pcond_c1 <- Pi1 * Probc1/(Pi1 * Probc1 + Pi2 * Probc2)
Pcond_c2 <- Pi2 * Probc2/(Pi1 * Probc1 + Pi2 * Probc2)
Group_c <- ifelse(Pcond_c1 > Pcond_c2, 1, 2)
margEff_c1 <- kronecker(matrix(delta1[2:object$nuZUvar],
nrow = 1), matrix(exp(Wu1/2) * dnorm(0), ncol = 1))
colnames(margEff_c1) <- paste0("Eu_", colnames(uHvar)[-1],
"_c1")
margEff_c2 <- kronecker(matrix(delta2[2:object$nuZUvar],
nrow = 1), matrix(exp(Wu2/2) * dnorm(0), ncol = 1))
colnames(margEff_c2) <- paste0("Eu_", colnames(uHvar)[-1],
"_c2")
margEff_c <- matrix(nrow = nrow(margEff_c1), ncol = ncol(margEff_c1))
for (c in 1:ncol(margEff_c1)) {
margEff_c[, c] <- ifelse(Group_c == 1, margEff_c1[, c],
margEff_c2[, c])
}
colnames(margEff_c) <- paste0("Eu_", colnames(uHvar)[-1],
"_c")
margEff <- bind_cols(as_tibble(margEff_c), as_tibble(margEff_c1),
as_tibble(margEff_c2))
return(margEff)
}
cmargLCM2Chalfnorm_Vu <- function(object) {
beta1 <- object$mlParam[1:(object$nXvar)]
delta1 <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi1 <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
beta2 <- object$mlParam[(object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + object$nuZUvar +
object$nvZVvar)]
delta2 <- object$mlParam[(2 * object$nXvar + object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar)]
phi2 <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar)]
theta <- object$mlParam[(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + 1):(2 * object$nXvar + 2 * object$nuZUvar +
2 * object$nvZVvar + object$nZHvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Zvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 4)
Wu1 <- as.numeric(crossprod(matrix(delta1), t(uHvar)))
Wu2 <- as.numeric(crossprod(matrix(delta2), t(uHvar)))
Wv1 <- as.numeric(crossprod(matrix(phi1), t(vHvar)))
Wv2 <- as.numeric(crossprod(matrix(phi2), t(vHvar)))
Wz <- as.numeric(crossprod(matrix(theta), t(Zvar)))
epsilon1 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta1), t(Xvar)))
epsilon2 <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta2), t(Xvar)))
mustar1 <- -exp(Wu1) * object$S * epsilon1/(exp(Wu1) + exp(Wv1))
sigmastar1 <- sqrt(exp(Wu1) * exp(Wv1)/(exp(Wu1) + exp(Wv1)))
mustar2 <- -exp(Wu2) * object$S * epsilon2/(exp(Wu2) + exp(Wv2))
sigmastar2 <- sqrt(exp(Wu2) * exp(Wv2)/(exp(Wu2) + exp(Wv2)))
Pi1 <- 2/sqrt(exp(Wu1) + exp(Wv1)) * dnorm(object$S * epsilon1/sqrt(exp(Wu1) +
exp(Wv1))) * pnorm(mustar1/sigmastar1)
Pi2 <- 2/sqrt(exp(Wu2) + exp(Wv2)) * dnorm(object$S * epsilon2/sqrt(exp(Wu2) +
exp(Wv2))) * pnorm(mustar2/sigmastar2)
Probc1 <- exp(Wz)/(1 + exp(Wz))
Probc2 <- 1 - Probc1
Pcond_c1 <- Pi1 * Probc1/(Pi1 * Probc1 + Pi2 * Probc2)
Pcond_c2 <- Pi2 * Probc2/(Pi1 * Probc1 + Pi2 * Probc2)
Group_c <- ifelse(Pcond_c1 > Pcond_c2, 1, 2)
margEff_c1 <- kronecker(matrix(delta1[2:object$nuZUvar],
nrow = 1), matrix(exp(Wu1) * (1 - (dnorm(0)/pnorm(0))^2),
ncol = 1))
colnames(margEff_c1) <- paste0("Vu_", colnames(uHvar)[-1],
"_c1")
margEff_c2 <- kronecker(matrix(delta2[2:object$nuZUvar],
nrow = 1), matrix(exp(Wu2) * (1 - (dnorm(0)/pnorm(0))^2),
ncol = 1))
colnames(margEff_c2) <- paste0("Vu_", colnames(uHvar)[-1],
"_c2")
margEff_c <- matrix(nrow = nrow(margEff_c1), ncol = ncol(margEff_c1))
for (c in 1:ncol(margEff_c1)) {
margEff_c[, c] <- ifelse(Group_c == 1, margEff_c1[, c],
margEff_c2[, c])
}
colnames(margEff_c) <- paste0("Vu_", colnames(uHvar)[-1],
"_c")
margEff <- bind_cols(as_tibble(margEff_c), as_tibble(margEff_c1),
as_tibble(margEff_c2))
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.