used.cars: US 1960 used car prices

Description Usage Format Source References Examples

Description

The used.cars data frame has 48 rows and 2 columns. The data set includes a neighbours list for the 48 states excluding DC from poly2nb().

Usage

1

Format

This data frame contains the following columns:

tax.charges

taxes and delivery charges for 1955-9 new cars

price.1960

1960 used car prices by state

Source

Hanna, F. A. 1966 Effects of regional differences in taxes and transport charges on automobile consumption, in Ostry, S., Rhymes, J. K. (eds) Papers on regional statistical studies, Toronto: Toronto University Press, pp. 199-223.

References

Hepple, L. W. 1976 A maximum likelihood model for econometric estimation with spatial series, in Masser, I (ed) Theory and practice in regional science, London: Pion, pp. 90-104.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
data(used.cars)
moran.test(used.cars$price.1960, nb2listw(usa48.nb))
moran.plot(used.cars$price.1960, nb2listw(usa48.nb),
  labels=rownames(used.cars))
uc.lm <- lm(price.1960 ~ tax.charges, data=used.cars)
summary(uc.lm)
lm.morantest(uc.lm, nb2listw(usa48.nb))
lm.morantest.sad(uc.lm, nb2listw(usa48.nb))
lm.LMtests(uc.lm, nb2listw(usa48.nb))
uc.err <- errorsarlm(price.1960 ~ tax.charges, data=used.cars,
  nb2listw(usa48.nb), tol.solve=1.0e-13, control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.err)
uc.lag <- lagsarlm(price.1960 ~ tax.charges, data=used.cars,
  nb2listw(usa48.nb), tol.solve=1.0e-13, control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.lag)
uc.lag1 <- lagsarlm(price.1960 ~ 1, data=used.cars,
  nb2listw(usa48.nb), tol.solve=1.0e-13, control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.lag1)
uc.err1 <- errorsarlm(price.1960 ~ 1, data=used.cars,
  nb2listw(usa48.nb), tol.solve=1.0e-13, control=list(tol.opt=.Machine$double.eps^0.3))
summary(uc.err1)

Example output

Loading required package: sp
Loading required package: spData
To access larger datasets in this package, install the spDataLarge
package with: `install.packages('spDataLarge',
repos='https://nowosad.github.io/drat/', type='source')`
Loading required package: sf
Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1

	Moran I test under randomisation

data:  used.cars$price.1960  
weights: nb2listw(usa48.nb)    

Moran I statistic standard deviate = 8.1752, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic       Expectation          Variance 
      0.783561543      -0.021276596       0.009692214 


Call:
lm(formula = price.1960 ~ tax.charges, data = used.cars)

Residuals:
     Min       1Q   Median       3Q      Max 
-116.701  -45.053   -1.461   43.400  107.807 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1435.7506    27.5796  52.058  < 2e-16 ***
tax.charges    0.6872     0.1754   3.918 0.000294 ***
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1

Residual standard error: 57.01 on 46 degrees of freedom
Multiple R-squared:  0.2503,	Adjusted R-squared:  0.234 
F-statistic: 15.35 on 1 and 46 DF,  p-value: 0.0002939


	Global Moran I for regression residuals

data:  
model: lm(formula = price.1960 ~ tax.charges, data = used.cars)
weights: nb2listw(usa48.nb)

Moran I statistic standard deviate = 6.3869, p-value = 8.466e-11
alternative hypothesis: greater
sample estimates:
Observed Moran I      Expectation         Variance 
     0.574817771     -0.030300549      0.008976437 


	Saddlepoint approximation for global Moran's I (Barndorff-Nielsen
	formula)

data:  
model:lm(formula = price.1960 ~ tax.charges, data = used.cars)
weights: nb2listw(usa48.nb)

Saddlepoint approximation = 5.6688, p-value = 7.19e-09
alternative hypothesis: greater
sample estimates:
Observed Moran I 
       0.5748178 


	Lagrange multiplier diagnostics for spatial dependence

data:  
model: lm(formula = price.1960 ~ tax.charges, data = used.cars)
weights: nb2listw(usa48.nb)

LMErr = 31.793, df = 1, p-value = 1.715e-08

Registered S3 methods overwritten by 'spatialreg':
  method                   from 
  residuals.stsls          spdep
  deviance.stsls           spdep
  coef.stsls               spdep
  print.stsls              spdep
  summary.stsls            spdep
  print.summary.stsls      spdep
  residuals.gmsar          spdep
  deviance.gmsar           spdep
  coef.gmsar               spdep
  fitted.gmsar             spdep
  print.gmsar              spdep
  summary.gmsar            spdep
  print.summary.gmsar      spdep
  print.lagmess            spdep
  summary.lagmess          spdep
  print.summary.lagmess    spdep
  residuals.lagmess        spdep
  deviance.lagmess         spdep
  coef.lagmess             spdep
  fitted.lagmess           spdep
  logLik.lagmess           spdep
  fitted.SFResult          spdep
  print.SFResult           spdep
  fitted.ME_res            spdep
  print.ME_res             spdep
  print.lagImpact          spdep
  plot.lagImpact           spdep
  summary.lagImpact        spdep
  HPDinterval.lagImpact    spdep
  print.summary.lagImpact  spdep
  print.sarlm              spdep
  summary.sarlm            spdep
  residuals.sarlm          spdep
  deviance.sarlm           spdep
  coef.sarlm               spdep
  vcov.sarlm               spdep
  fitted.sarlm             spdep
  logLik.sarlm             spdep
  anova.sarlm              spdep
  predict.sarlm            spdep
  print.summary.sarlm      spdep
  print.sarlm.pred         spdep
  as.data.frame.sarlm.pred spdep
  residuals.spautolm       spdep
  deviance.spautolm        spdep
  coef.spautolm            spdep
  fitted.spautolm          spdep
  print.spautolm           spdep
  summary.spautolm         spdep
  logLik.spautolm          spdep
  print.summary.spautolm   spdep
  print.WXImpact           spdep
  summary.WXImpact         spdep
  print.summary.WXImpact   spdep
  predict.SLX              spdep
Warning message:
Function errorsarlm moved to the spatialreg package 

Call:spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
    na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
    quiet = quiet, zero.policy = zero.policy, interval = interval, 
    tol.solve = tol.solve, trs = trs, control = control)

Residuals:
     Min       1Q   Median       3Q      Max 
-74.8241 -17.4590   2.4061  21.2784  64.5967 

Type: error 
Coefficients: (asymptotic standard errors) 
              Estimate Std. Error z value Pr(>|z|)
(Intercept) 1528.34521   31.96239 47.8170   <2e-16
tax.charges    0.08831    0.11923  0.7406   0.4589

Lambda: 0.81899, LR test value: 40.899, p-value: 1.603e-10
Asymptotic standard error: 0.074052
    z-value: 11.06, p-value: < 2.22e-16
Wald statistic: 122.32, p-value: < 2.22e-16

Log likelihood: -240.7163 for error model
ML residual variance (sigma squared): 1043.9, (sigma: 32.309)
Number of observations: 48 
Number of parameters estimated: 4 
AIC: 489.43, (AIC for lm: 528.33)

Warning message:
Function lagsarlm moved to the spatialreg package 

Call:spatialreg::lagsarlm(formula = formula, data = data, listw = listw, 
    na.action = na.action, Durbin = Durbin, type = type, method = method, 
    quiet = quiet, zero.policy = zero.policy, interval = interval, 
    tol.solve = tol.solve, trs = trs, control = control)

Residuals:
     Min       1Q   Median       3Q      Max 
-77.6781 -16.9505   4.2498  19.5486  58.9811 

Type: lag 
Coefficients: (asymptotic standard errors) 
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 309.42997  123.03283  2.5150   0.0119
tax.charges   0.16711    0.10212  1.6364   0.1018

Rho: 0.78302, LR test value: 42.681, p-value: 6.4426e-11
Asymptotic standard error: 0.081637
    z-value: 9.5914, p-value: < 2.22e-16
Wald statistic: 91.995, p-value: < 2.22e-16

Log likelihood: -239.8252 for lag model
ML residual variance (sigma squared): 1036.7, (sigma: 32.197)
Number of observations: 48 
Number of parameters estimated: 4 
AIC: 487.65, (AIC for lm: 528.33)
LM test for residual autocorrelation
test value: 2.1139, p-value: 0.14596

Warning message:
Function lagsarlm moved to the spatialreg package 

Call:spatialreg::lagsarlm(formula = formula, data = data, listw = listw, 
    na.action = na.action, Durbin = Durbin, type = type, method = method, 
    quiet = quiet, zero.policy = zero.policy, interval = interval, 
    tol.solve = tol.solve, trs = trs, control = control)

Residuals:
     Min       1Q   Median       3Q      Max 
-76.1518 -18.2214   5.2489  21.6309  63.4983 

Type: lag 
Coefficients: (asymptotic standard errors) 
            Estimate Std. Error z value Pr(>|z|)
(Intercept)   263.50     109.61  2.4038  0.01622

Rho: 0.82919, LR test value: 54.202, p-value: 1.8086e-13
Asymptotic standard error: 0.070993
    z-value: 11.68, p-value: < 2.22e-16
Wald statistic: 136.42, p-value: < 2.22e-16

Log likelihood: -240.977 for lag model
ML residual variance (sigma squared): 1045.4, (sigma: 32.333)
Number of observations: 48 
Number of parameters estimated: 3 
AIC: 487.95, (AIC for lm: 540.16)
LM test for residual autocorrelation
test value: 2.1495, p-value: 0.14262

Warning message:
Function errorsarlm moved to the spatialreg package 

Call:spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
    na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
    quiet = quiet, zero.policy = zero.policy, interval = interval, 
    tol.solve = tol.solve, trs = trs, control = control)

Residuals:
     Min       1Q   Median       3Q      Max 
-76.1518 -18.2214   5.2489  21.6309  63.4983 

Type: error 
Coefficients: (asymptotic standard errors) 
            Estimate Std. Error z value  Pr(>|z|)
(Intercept) 1542.607     27.321  56.462 < 2.2e-16

Lambda: 0.82919, LR test value: 54.202, p-value: 1.8086e-13
Asymptotic standard error: 0.070993
    z-value: 11.68, p-value: < 2.22e-16
Wald statistic: 136.42, p-value: < 2.22e-16

Log likelihood: -240.977 for error model
ML residual variance (sigma squared): 1045.4, (sigma: 32.333)
Number of observations: 48 
Number of parameters estimated: 3 
AIC: 487.95, (AIC for lm: 540.16)

spdep documentation built on Aug. 19, 2017, 3:01 a.m.