Description Usage Arguments Details Value Author(s) References See Also Examples
Determines the positive, negative, false positive and false negative rates of identification accuracy for a given threshold.
1 |
distobj |
Distance matrix. |
sppVector |
Species vector (see |
threshold |
Threshold distance for delimiting intra- and inter-specific variation. Default of 0.01. |
When run over a range of thresholds, this function allows the optimisation of threshold values based on minimising the identification error rates. See the example below for more details.
A table giving the threshold and number of negative and positive identifications, number of false negative and false positive identifications, and the cumulative error.
Rupert Collins <rupertcollins@gmail.com>
Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. _PLoS Biology_ *3* (12), 2229-2238.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(anoteropsis)
anoDist <- dist.dna(anoteropsis)
anoSpp <- sapply(strsplit(dimnames(anoteropsis)[[1]], split="_"),
function(x) paste(x[1], x[2], sep="_"))
threshOpt(anoDist, anoSpp)
data(dolomedes)
doloDist <- dist.dna(dolomedes)
doloSpp <- substr(dimnames(dolomedes)[[1]], 1, 5)
threshOpt(doloDist, doloSpp)
#Conduct the analysis over a range of values to determine the optimum threshold
threshVal <- seq(0.001,0.02, by = 0.001)
opt <- lapply(threshVal, function(x) threshOpt(doloDist, doloSpp, thresh = x))
optMat <- do.call(rbind, opt)
barplot(t(optMat)[4:5,], names.arg=optMat[,1], xlab="Threshold values",
ylab="Cumulative error")
legend(x = 2.5, y = 29, legend = c("False positives", "False negatives"),
fill = c("grey75", "grey25"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.