Description Usage Arguments Details Value Note Author(s) References See Also Examples
Function finds the Raup-Crick dissimilarity which is a probability of number of co-occurring species with species occurrence probabilities proportional to species frequencies.
1 |
comm |
Community data which will be treated as presence/absence data. |
null |
Null model used as the |
nsimul |
Number of null communities for assessing the dissimilarity index. |
chase |
Use the Chase et al. (2011) method of tie handling (not recommended except for comparing the results against the Chase script). |
... |
Other parameters passed to |
Raup-Crick index is the probability that compared sampling units have non-identical species composition. This probability can be regarded as a dissimilarity, although it is not metric: identical sampling units can have dissimilarity slightly above 0, the dissimilarity can be nearly zero over a range of shared species, and sampling units with no shared species can have dissimilarity slightly below 1. Moreover, communities sharing rare species appear as more similar (lower probability of finding rare species together), than communities sharing the same number of common species.
The function will always treat the data as binary (presence/ absence).
The probability is assessed using simulation with
oecosimu
where the test statistic is the observed
number of shared species between sampling units evaluated against a
community null model (see Examples). The default null model is
"r1"
where the probability of selecting species is
proportional to the species frequencies.
The vegdist
function implements a variant of the
Raup-Crick index with equal sampling probabilities for species using
exact analytic equations without simulation. This corresponds to
null
model "r0"
which also can be used with the
current function. All other null model methods of
oecosimu
can be used with the current function, but
they are new unpublished methods.
The function returns an object inheriting from
dist
which can be interpreted as a dissimilarity
matrix.
The test statistic is the number of shared species, and this is
typically tied with a large number of simulation results. The tied
values are handled differently in the current function and in the
function published with Chase et al. (2011). In vegan, the
index is the number of simulated values that are smaller or
equal than the observed value, but smaller than observed value is
used by Chase et al. (2011) with option split = FALSE
in
their script; this can be achieved with chase = TRUE
in
vegan. Chase et al. (2011) script with split = TRUE
uses half of tied simulation values to calculate a distance measure,
and that choice cannot be directly reproduced in vegan (it is the
average of vegan raupcrick
results with
chase = TRUE
and chase = FALSE
).
The function was developed after Brian Inouye contacted us and informed us about the method in Chase et al. (2011), and the function takes its idea from the code that was published with their paper. The current function was written by Jari Oksanen.
Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M. and Inouye, B.D. (2011). Using null models to disentangle variation in community dissimilarity from variation in alpha-diversity. Ecosphere 2:art24 [doi:10.1890/ES10-00117.1]
The function is based on oecosimu
. Function
vegdist
with method = "raup" implements a related
index but with equal sampling densities of species, and
designdist
demonstrates its calculation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## data set with variable species richness
data(sipoo)
## default raupcrick
dr1 <- raupcrick(sipoo)
## use null model "r0" of oecosimu
dr0 <- raupcrick(sipoo, null = "r0")
## vegdist(..., method = "raup") corresponds to 'null = "r0"'
d <- vegdist(sipoo, "raup")
op <- par(mfrow=c(2,1), mar=c(4,4,1,1)+.1)
plot(dr1 ~ d, xlab = "Raup-Crick with Null R1", ylab="vegdist")
plot(dr0 ~ d, xlab = "Raup-Crick with Null R0", ylab="vegdist")
par(op)
## The calculation is essentially as in the following oecosimu() call,
## except that designdist() is replaced with faster code
## Not run:
oecosimu(sipoo, function(x) designdist(x, "J", "binary"), method = "r1")
## End(Not run)
|
Loading required package: permute
Loading required package: lattice
This is vegan 2.4-3
oecosimu object
Call: oecosimu(comm = sipoo, nestfun = function(x) designdist(x, "J",
"binary"), method = "r1")
nullmodel method 'r1' with 99 simulations
alternative hypothesis: statistic is less or greater than simulated values
Svartholm L.Hogholm Ledholmen S.Hogholm Torvedsh SkataLed Flakaskar
L.Hogholm 2
Ledholmen 3 3
S.Hogholm 1 1 1
Torvedsh 3 3 4 2
SkataLed 1 3 2 2 4
Flakaskar 1 1 1 2 3 3
S.farholm 3 3 4 2 4 4 2
Farholmn 1 2 1 2 2 4 2
Asplandet 1 2 1 2 3 4 3
Granlndet 2 3 3 2 5 6 3
Hanskholm 3 3 4 2 6 4 3
Ragskar 3 3 4 2 6 5 3
Trutland 3 3 5 1 5 3 2
Kaivokari 2 3 3 2 5 6 3
Mustahevo 2 2 3 2 5 5 3
Kaunissri 3 4 5 2 6 6 3
Onas 3 4 4 2 6 6 4
S.farholm Farholmn Asplandet Granlndet Hanskholm Ragskar Trutland
L.Hogholm
Ledholmen
S.Hogholm
Torvedsh
SkataLed
Flakaskar
S.farholm
Farholmn 5
Asplandet 4 4
Granlndet 7 5 6
Hanskholm 6 4 4 6
Ragskar 6 5 4 7 8
Trutland 6 2 4 6 7 7
Kaivokari 6 6 5 8 7 10 7
Mustahevo 5 5 4 8 7 11 7
Kaunissri 9 6 6 10 10 11 11
Onas 7 6 5 9 9 12 9
Kaivokari Mustahevo Kaunissri
L.Hogholm
Ledholmen
S.Hogholm
Torvedsh
SkataLed
Flakaskar
S.farholm
Farholmn
Asplandet
Granlndet
Hanskholm
Ragskar
Trutland
Kaivokari
Mustahevo 11
Kaunissri 13 15
Onas 15 15 22
statistic SES mean 2.5% 50% 97.5% Pr(sim.)
[1,] 2 1.817643 0.60606 0.00000 0.00000 2.00 0.27
[2,] 3 3.515120 0.59596 0.00000 0.00000 2.00 0.03 *
[3,] 1 1.667133 0.26263 0.00000 0.00000 1.00 0.53
[4,] 3 2.583701 0.90909 0.00000 1.00000 3.00 0.09 .
[5,] 1 0.168818 0.86869 0.00000 1.00000 3.00 1.00
[6,] 1 0.494518 0.68687 0.00000 1.00000 2.00 1.00
[7,] 3 1.804440 1.39394 0.00000 1.00000 3.00 0.19
[8,] 1 0.102129 0.91919 0.00000 1.00000 3.00 1.00
[9,] 1 -0.200991 1.19192 0.00000 1.00000 3.00 1.00
[10,] 2 0.104829 1.89899 0.00000 2.00000 3.00 1.00
[11,] 3 1.630834 1.43434 0.00000 1.00000 3.00 0.29
[12,] 3 1.416663 1.69697 0.00000 2.00000 3.00 0.35
[13,] 3 1.313352 1.85859 0.00000 2.00000 3.00 0.53
[14,] 2 -0.255528 2.27273 0.00000 2.00000 4.00 1.00
[15,] 2 -0.360041 2.33333 1.00000 2.00000 4.00 1.00
[16,] 3 -0.392787 3.29293 2.00000 3.00000 4.00 1.00
[17,] 3 -0.752101 3.48485 2.00000 4.00000 4.00 0.89
[18,] 3 3.405735 0.66667 0.00000 1.00000 2.00 0.03 *
[19,] 1 1.322676 0.32323 0.00000 0.00000 1.00 0.61
[20,] 3 2.934576 0.96970 0.00000 1.00000 2.00 0.03 *
[21,] 3 2.997374 0.85859 0.00000 1.00000 2.00 0.03 *
[22,] 1 0.501892 0.64646 0.00000 1.00000 2.00 1.00
[23,] 3 1.773160 1.38384 0.00000 1.00000 3.00 0.21
[24,] 2 1.412803 0.91919 0.00000 1.00000 2.55 0.39
[25,] 2 0.946661 1.15152 0.00000 1.00000 3.00 0.65
[26,] 3 1.171234 1.82828 0.00000 2.00000 4.00 0.55
[27,] 3 1.629512 1.48485 0.00000 2.00000 3.00 0.25
[28,] 3 1.287925 1.74747 0.00000 2.00000 4.00 0.39
[29,] 3 1.038641 2.11111 1.00000 2.00000 4.00 0.61
[30,] 3 0.995040 2.01010 0.00000 2.00000 4.00 0.67
[31,] 2 -0.241308 2.22222 1.00000 2.00000 4.00 1.00
[32,] 4 1.100855 3.23232 2.00000 3.00000 4.00 0.77
[33,] 4 0.803205 3.49495 2.00000 4.00000 4.00 1.00
[34,] 1 0.918705 0.45455 0.00000 0.00000 2.00 0.81
[35,] 4 3.005561 1.30303 0.00000 1.00000 3.00 0.01 **
[36,] 2 0.828900 1.31313 0.00000 1.00000 3.00 0.85
[37,] 1 0.199147 0.84848 0.00000 1.00000 2.00 1.00
[38,] 4 2.385983 1.70707 0.00000 2.00000 3.55 0.07 .
[39,] 1 -0.267344 1.20202 0.00000 1.00000 2.00 1.00
[40,] 1 -0.477960 1.47475 0.00000 1.00000 3.55 1.00
[41,] 3 0.577918 2.35354 0.00000 3.00000 4.00 1.00
[42,] 4 2.119678 1.85859 0.00000 2.00000 4.00 0.09 .
[43,] 4 1.908853 2.10101 0.00000 2.00000 4.00 0.11
[44,] 5 2.305181 2.44444 0.45000 3.00000 4.00 0.03 *
[45,] 3 0.200440 2.76768 0.45000 3.00000 5.00 1.00
[46,] 3 0.214574 2.77778 1.00000 3.00000 4.55 1.00
[47,] 5 1.010835 4.16162 2.00000 4.00000 5.00 0.79
[48,] 4 -0.577281 4.39394 3.00000 4.00000 5.00 1.00
[49,] 2 2.527566 0.49495 0.00000 0.00000 2.00 0.11
[50,] 2 2.645547 0.43434 0.00000 0.00000 2.00 0.11
[51,] 2 3.731935 0.29293 0.00000 0.00000 1.00 0.01 **
[52,] 2 1.842759 0.77778 0.00000 1.00000 2.00 0.27
[53,] 2 2.774377 0.41414 0.00000 0.00000 2.00 0.09 .
[54,] 2 1.989873 0.66667 0.00000 1.00000 2.00 0.23
[55,] 2 1.687789 0.78788 0.00000 1.00000 2.00 0.35
[56,] 2 1.839639 0.78788 0.00000 1.00000 2.00 0.27
[57,] 2 1.893740 0.75758 0.00000 1.00000 2.00 0.25
[58,] 1 -0.092981 1.06061 0.00000 1.00000 2.00 1.00
[59,] 2 1.361407 1.11111 0.00000 1.00000 2.00 0.55
[60,] 2 1.069329 1.28283 0.00000 1.00000 2.00 0.81
[61,] 2 0.624806 1.71717 1.00000 2.00000 2.00 1.00
[62,] 2 0.332411 1.86869 1.00000 2.00000 2.00 1.00
[63,] 4 3.258578 1.24242 0.00000 1.00000 3.00 0.01 **
[64,] 3 3.509236 0.76768 0.00000 1.00000 2.00 0.01 **
[65,] 4 1.905159 2.00000 0.00000 2.00000 4.00 0.17
[66,] 2 0.707557 1.32323 0.00000 1.00000 3.00 0.83
[67,] 3 1.235700 1.74747 0.00000 2.00000 3.55 0.49
[68,] 5 1.775376 2.69697 0.00000 3.00000 5.00 0.19
[69,] 6 3.338042 2.24242 0.00000 2.00000 4.00 0.01 **
[70,] 6 3.010334 2.40404 0.00000 2.00000 5.00 0.01 **
[71,] 5 1.982252 2.86869 1.00000 3.00000 5.00 0.11
[72,] 5 1.812934 2.96970 1.00000 3.00000 5.00 0.19
[73,] 5 1.469862 3.33333 1.00000 3.00000 5.00 0.33
[74,] 6 1.248159 4.74747 3.00000 5.00000 6.00 0.47
[75,] 6 0.924673 5.18182 3.00000 5.00000 6.00 0.85
[76,] 3 2.091606 1.03030 0.00000 1.00000 3.00 0.13
[77,] 4 1.775855 2.18182 0.00000 2.00000 4.00 0.21
[78,] 4 2.770045 1.38384 0.00000 1.00000 3.00 0.01 **
[79,] 4 2.145736 1.77778 0.00000 2.00000 4.00 0.11
[80,] 6 3.020112 2.70707 1.00000 3.00000 4.55 0.01 **
[81,] 4 1.925850 2.25253 1.00000 2.00000 4.00 0.21
[82,] 5 2.344439 2.44444 1.00000 2.00000 5.00 0.09 .
[83,] 3 -0.044063 3.05051 1.00000 3.00000 5.00 1.00
[84,] 6 2.247203 3.33333 1.00000 3.00000 6.00 0.09 .
[85,] 5 1.485939 3.46465 1.45000 4.00000 5.00 0.31
[86,] 6 1.095491 4.89899 3.00000 5.00000 6.00 0.65
[87,] 6 0.926178 5.22222 3.00000 5.00000 6.00 0.89
[88,] 2 0.740554 1.39394 0.00000 1.00000 3.00 0.89
[89,] 2 1.440800 0.90909 0.00000 1.00000 2.00 0.45
[90,] 3 2.162006 1.17172 0.00000 1.00000 3.00 0.13
[91,] 3 1.448291 1.65657 0.00000 2.00000 3.00 0.35
[92,] 3 1.787215 1.42424 0.00000 1.00000 3.00 0.25
[93,] 3 1.371511 1.78788 0.00000 2.00000 3.00 0.47
[94,] 2 0.124722 1.88889 0.00000 2.00000 3.55 1.00
[95,] 3 0.903659 2.10101 0.00000 2.00000 4.00 0.75
[96,] 3 0.910055 2.13131 0.00000 2.00000 4.00 0.63
[97,] 3 -0.265521 3.21212 1.45000 3.00000 4.00 1.00
[98,] 4 0.762539 3.48485 2.00000 4.00000 4.00 1.00
[99,] 5 2.523460 2.19192 0.00000 2.00000 4.00 0.03 *
[100,] 4 1.104999 2.71717 1.00000 3.00000 5.00 0.47
[101,] 7 1.982558 4.28283 2.00000 4.00000 7.00 0.15
[102,] 6 1.848986 3.42424 1.00000 3.00000 6.00 0.17
[103,] 6 1.708111 3.95960 2.00000 4.00000 6.55 0.19
[104,] 6 1.250563 4.39394 2.00000 4.00000 7.00 0.45
[105,] 6 0.788095 4.98990 3.00000 5.00000 7.00 0.65
[106,] 5 -0.432260 5.58586 3.00000 6.00000 8.00 0.95
[107,] 9 0.957030 7.71717 5.00000 8.00000 10.00 0.49
[108,] 7 -1.793108 8.64646 7.00000 9.00000 10.00 0.21
[109,] 4 2.272249 1.73737 0.00000 2.00000 4.00 0.13
[110,] 5 1.903690 2.81818 1.00000 3.00000 5.00 0.11
[111,] 4 1.755976 2.16162 0.00000 2.00000 4.00 0.19
[112,] 5 2.102507 2.67677 1.00000 3.00000 4.55 0.07 .
[113,] 2 -0.668663 2.81818 0.45000 3.00000 5.00 0.79
[114,] 6 2.493512 3.17172 1.00000 3.00000 5.00 0.05 *
[115,] 5 1.353937 3.48485 2.00000 4.00000 5.55 0.35
[116,] 6 1.285942 4.96970 3.00000 5.00000 6.00 0.53
[117,] 6 0.982807 5.25253 4.00000 5.00000 6.00 0.85
[118,] 6 1.852104 3.48485 1.00000 3.00000 6.00 0.15
[119,] 4 0.991012 2.72727 0.45000 3.00000 5.00 0.59
[120,] 4 0.703399 3.08081 1.00000 3.00000 5.00 0.81
[121,] 4 0.320755 3.52525 1.00000 3.00000 6.00 0.97
[122,] 5 0.704324 3.95960 1.00000 4.00000 6.00 0.73
[123,] 4 -0.057234 4.08081 1.45000 4.00000 7.00 1.00
[124,] 6 -0.311300 6.32323 4.45000 6.00000 8.00 1.00
[125,] 5 -2.200414 6.89899 5.00000 7.00000 8.00 0.11
[126,] 6 1.080346 4.45455 2.00000 4.00000 7.00 0.47
[127,] 7 1.253298 5.10101 2.45000 5.00000 8.00 0.39
[128,] 6 0.329366 5.55556 3.00000 6.00000 8.00 1.00
[129,] 8 1.209777 6.33333 4.00000 6.00000 9.00 0.39
[130,] 8 0.714667 6.75758 3.00000 7.00000 10.00 0.77
[131,] 10 -0.187295 10.24242 8.00000 10.00000 12.55 1.00
[132,] 9 -1.764598 11.06061 9.00000 11.00000 13.00 0.21
[133,] 8 3.084507 4.11111 1.00000 4.00000 6.00 0.01 **
[134,] 7 1.538724 4.78788 2.00000 5.00000 8.00 0.27
[135,] 7 1.322415 5.22222 2.45000 5.00000 8.00 0.27
[136,] 7 0.901068 5.56566 3.00000 6.00000 8.00 0.57
[137,] 10 1.649916 8.00000 5.00000 8.00000 10.00 0.19
[138,] 9 0.506304 8.43434 6.00000 9.00000 10.00 1.00
[139,] 7 1.096162 5.49495 3.00000 5.00000 8.00 0.53
[140,] 10 3.029523 5.81818 2.45000 6.00000 8.00 0.01 **
[141,] 11 3.178976 6.11111 3.00000 6.00000 9.00 0.01 **
[142,] 11 1.181489 9.52525 7.00000 10.00000 11.00 0.55
[143,] 12 1.577920 10.07071 7.45000 10.00000 12.00 0.21
[144,] 7 0.064148 6.89899 4.00000 7.00000 9.55 1.00
[145,] 7 -0.270320 7.41414 4.00000 8.00000 10.55 0.99
[146,] 11 -0.022061 11.03030 9.00000 11.00000 14.00 1.00
[147,] 9 -2.172582 11.82828 9.00000 12.00000 14.00 0.09 .
[148,] 11 1.649133 8.52525 6.00000 8.00000 11.00 0.27
[149,] 13 0.533069 12.25253 10.00000 12.00000 15.00 0.85
[150,] 15 1.373913 13.13131 10.00000 13.00000 15.00 0.29
[151,] 15 1.262834 12.95960 9.45000 13.00000 15.55 0.41
[152,] 15 0.643627 14.04040 11.00000 14.00000 16.55 0.85
[153,] 22 -0.879350 23.37374 21.00000 23.00000 26.55 0.59
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.