Nothing
WoodChanfGn <-
function( mesh , H , dimmesh )
{
##--------------------------------------------------------------------------
## Author : Alexandre Brouste
## Project: Yuima
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Input mesh : mesh grid where the fBm is evaluated
## H : self-similarity parameter
## dim : valued in R^dim
##
##
## Output :
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Complexity ?
## -------------------------------------------------------------------------
mesh<-mesh[[1]]
N<-length(mesh)-2 # N+1 is the size of the fGn sample to be simulated
fGn<-matrix(0,dimmesh,N+1)
T<-mesh[N+2]
H2 <- 2*H
k <- 0:N
autocov<-0.5 * (abs(k-1)^H2 - 2*(k)^H2 + (k+1)^H2) * (T/(N+1))^H2
# g(0),g(1),g(n-1),g(1)
ligne1C<-autocov[1 + c(0:N,(N-1):1)]
lambdak<-Re(fft(ligne1C,inverse = TRUE))
for (k in 1:dimmesh){
zr <- rnorm(N+1)
zi <- rnorm(N-1)
zr[c(1,N+1)] <- zr[c(1,N+1)]*sqrt(2)
zr <- c(zr[1:(N+1)], zr[N:2])
zi <- c(0,zi,0,-zi[(N-1):1])
z <- Re(fft((zr + 1i* zi) * sqrt(lambdak), inverse = TRUE))
fGn[k,]<-z[1:(N+1)] / (2*sqrt(N))
}
#Traitement des zeros
#La matrice est definie positive (voir 17)
return(fGn)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.