Nothing
infer_only_Together = function(f, l, exon_id, N, R, burn_in,
mean_log_precision, sd_log_precision,
genes, transcripts){
n_genes = length(genes)
K = vapply(genes, function(x) sum(names(transcripts) == x), FUN.VALUE = integer(1))
K_tot = sum(K)
gene_id = vapply(genes, function(x) names(transcripts) == x, FUN.VALUE = logical(K_tot))
# sapply(genes, function(x) names(transcripts) == x)
order = unlist(apply(gene_id, 2, which))
# order transcripts such that the first K[1] transcripts refer to the 1st gene, and so on.
l = l[order]
exon_id = exon_id[order,]
transcripts = transcripts[order]
gene_id = gene_id[order,]
### ### ### if K == 1, do not provide a p.value, set pi = 1 in the function above!!!
if( all(K == 1) ){
return( NULL ) # if all genes have 1 transcript only, I cannot infer any DTU genes so I return all -1's
}
chain = MCMC_infer_only_Together(f = f, l = l, exon_id = exon_id, N = N,
n_genes = n_genes, R = R, K = K, gene_id = gene_id,
burn_in = burn_in, mean_log_precision = mean_log_precision, sd_log_precision = sd_log_precision)
if(chain[[2]][1] == 0){ # IF the chain didn't converge (3 times), return NULL result:
return( list(res = NA, convergence = chain[[2]]) )
}
res = res_compute_infer_only_Together(chain, K = K, n_genes = n_genes, genes = genes, gene_id = gene_id, transcripts = transcripts)
# if all genes tested (with at least 2 transcripts) have a p.val[55] > 0.1 I return the p.vals
return( list(res = res, convergence = chain[[2]]) ) # return the convergence result too (to check they are all converged with reasonable burn-in).
}
MCMC_infer_only_Together = function(f, l, exon_id, N, n_genes, R, K, gene_id, burn_in, mean_log_precision, sd_log_precision,
FIRST_chain = 1){
One_transcript = K ==1
J = ncol(exon_id);
# define object containing the data:
f_list = list()
# starting values for the alpha parameters, sampled in the log-space:
alpha_new = list()
# pi:
pi_new = list()
# mcmc matrices:
mcmc_alpha = list()
# chol matrices:
chol_mat = list()
# tot:
TOT_Y_new = list()
# log-prec:
precision = list()
for(g in seq_len(n_genes) ){
if(!One_transcript[g]){
precision[[g]] = matrix(NA, nrow = R, ncol = 1)
}else{
precision[[g]] = matrix(NaN, nrow = 1, ncol = 1)
}
mcmc_alpha[[g]] = list()
n = 1
if(!One_transcript[g]){ # only store the matrix IF more than 1 transcript in the group
mcmc_alpha[[g]][[n]] = matrix(NA, nrow = R + burn_in, ncol = K[g]) # hyper-parameters of the DM
}else{
mcmc_alpha[[g]][[n]] = matrix(NaN, nrow = 1, ncol = 1)
}
}
n = 1 # group index (always 1)
# define object containing the data:
f_list[[n]] = as.matrix(f)
TOT_Y_new[[n]] = matrix(1, nrow = N[n], ncol = n_genes)
alpha_new[[n]] = list()
pi_new[[n]] = list()
chol_mat[[n]] = list()
for(g in seq_len(n_genes) ){
if(!One_transcript[g]){
# starting values for alpha_new (log space):
if( mean_log_precision != 0){
alpha_new[[n]][[g]] = rep( mean_log_precision - log(K[g]), K[g]) # delta_1, ..., delta_{K-1}, delta_{K}
}else{
alpha_new[[n]][[g]] = rep( log(10) - log(K[g]), K[g]) # delta_1, ..., delta_{K-1}, delta_{K}
}
# pi's:
pi_new[[n]][[g]] = matrix( 1/K[g], nrow = N[n], ncol = K[g])
# mcmc matrices:
#mcmc_alpha[[n]][[g]] = matrix(NA, nrow = R + burn_in, ncol = K[g]) # hyper-parameters of the DM
#chol matrices:
chol_mat[[n]][[g]] = matrix(0, nrow = K[g], ncol = K[g])
}else{
alpha_new[[n]][[g]] = NaN
# pi's:
pi_new[[n]][[g]] = matrix( NaN )
#chol matrices:
chol_mat[[n]][[g]] = matrix(NaN)
}
}
one_transcript = colSums(exon_id) == 1
N = as.integer(N)
# Run the MCMC fully in Rcpp:
res = .Call(`_BANDITS_Rcpp_FULL_Together_Multigroup`, R + burn_in, burn_in, N, 1, # 1 indicates N_groups
mean_log_precision, sd_log_precision,
pi_new, mcmc_alpha, alpha_new, chol_mat, TOT_Y_new, precision,
K, l, f_list, exon_id, One_transcript, one_transcript)
# Compute the convergence diagnostic:
seq. = round( seq.int(1, R, length.out = 10^4 ) ) # thin if R > 10^4 (by construction R >= 10^4)
convergence = my_heidel.diag(res[[2]][seq.], R = length(seq.), by. = length(seq.)/10, pvalue = 0.01)
# output:
# Stationarity test passed (1) or not (0);
# start iteration (it'd be > burn_in);
# p-value (for the Stationarity test).
if(convergence[1] == 1){ # if it converged:
if(convergence[2] > 1){ # remove burn-in estimated by heidel.diag (which is, AT MOST, half of the chain):
for(g in seq_along(K) ){
if(K[g] > 1){
res[[3]][[g]] = c(res[[3]][[g]])[seq.][-{seq_len(convergence[2]-1)}]
res[[1]][[g]][[n]] = res[[1]][[g]][[n]][seq.,][-{seq_len(convergence[2]-1)},]
}
}
}else{ # if convergence[2] == 1, seq. has altready been defined above.
if(R > 10^4){ # thin if R > 10^4
for(g in seq_along(K) ){
if(K[g] > 1){
res[[3]][[g]] = c(res[[3]][[g]])[seq.]
res[[1]][[g]][[n]] = res[[1]][[g]][[n]][seq.,]
}
}
}
}
}else{ # IF not converged, RUN a second chain (once only):
if(FIRST_chain < 3){ # if first or second chain re-run again:
#message("the first chain did NOT converge, I run a second one:")
return( MCMC_infer_only_Together(f, l, exon_id, N, n_genes, R, K, gene_id, burn_in, mean_log_precision, sd_log_precision, FIRST_chain + 1) )
}else{ # if I ran 3 chains already and none of them converged, return convergence failure message:
return(list(NaN, convergence, FIRST_chain))
}
}
# thin results to return 10^4 iterations.
# thin if R > 10^4 (to return 10^4 values).
list( res[[1]], convergence, res[[3]] ) # I return the list of MCMC chains, excluding the burn-in, and the convergence output
}
res_compute_infer_only_Together = function(mcmc, K, n_genes, genes, gene_id, transcripts){
res = matrix(-1, nrow = n_genes, ncol = 2)
mode_groups = sd_groups = list()
# do usual testing procedure on each gene separately:
for(g in seq_along(K)){
if(K[g] > 1){ # if 1 transcripts per gene I keep the result equal to -1
pval_pi_T = res_compute_infer_only( list(mcmc[[1]][[g]], NULL, mcmc[[3]][[g]]), K = K[g])
res[g,] = pval_pi_T[[1]]
mode_groups[[g]] = pval_pi_T[[2]]
sd_groups[[g]] = pval_pi_T[[3]]
names(mode_groups[[g]]) = transcripts[gene_id[,g]]
}
}
rownames(res) = genes # gene id to the gene results
list( res, mode_groups, sd_groups)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.